Skip to main content
Log in

Synthesis and Characterization of Nanocomposite Based on Sodalite and Polycaprolactone

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In recent years, nanocomposites based on biodegradable polymer and clay have received increasing interest and their development has become a very hot topic. Herein, it is reported a sustainable route across simple, lucrative ways and at low cost for synthesizing zeolite (sodalite), polycaprolactone and based polycaprolactone/sodalite nanocomposite. Sodalite was prepared from a broadly available kaolin depot from the west Algeria. Physical and chemical characteristics of the synthesized nanocomposite and its components are qualified using XRF, BET, TGA, XRD, SEM, AFM, and FTIR. Moreover, this article also includes a simple method for preparing dry powder specimens to AFM analysis, which showed a decrease in the surface roughness from kaolin to nanocomposite through zeolite. This research suggests the use of synthesized materials sodalite and nanocomposite as adsorbents for environmental remediation to eliminate pollutants due to their important measured characteristics for synthesized materials such as BET surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Rickerby and M. Morrison, Sci. Technol. Adv. Mater. 8, 19 (2007). https://doi.org/10.1016/j.stam.2006.10.002

    Article  CAS  Google Scholar 

  2. G. Brumfiel, Nature (London, U.K.) 424, 246 (2003). https://doi.org/10.1038/424246a

    Article  CAS  Google Scholar 

  3. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005). https://doi.org/10.1142/5894

    Book  Google Scholar 

  4. H. Saleem, S. J. Zaidi, A. F. Ismail, and P. S. Goh, Chemosphere 287, 132083 (2022). https://doi.org/10.1016/j.chemosphere.2021.132083

  5. N. Yadav, V. K. Garg, A. K. Chhillar, and J. S. Rana, Chemosphere 280, 130792 (2021). https://doi.org/10.1016/j.chemosphere.2021.130792

  6. S. Z. Mohammadi, Z. Darijani, and M. A. Karimi, Russ. J. Phys. Chem. A 95, S33 (2021). https://doi.org/10.1134/S0036024421140144

    Article  CAS  Google Scholar 

  7. I. Ali, Chem. Rev. 112, 5073 (2012). https://doi.org/10.1021/cr300133d

    Article  CAS  PubMed  Google Scholar 

  8. H. Sadegh, G. A. M. Ali, V. K. Gupta, A. S. H. Makhlouf, R. S. Ghoshekandi, M. N. Nadagouda, M. Sillanpa, and E. Z. Megiel, J. Nanostruct. Chem. 7, 1 (2017). https://doi.org/10.1007/s40097-017-0219-4

    Article  CAS  Google Scholar 

  9. A. Kumari, S. K. Yadav, and S. C. Yadav, Colloids Surf., B 75, 1 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  Google Scholar 

  10. M. R. Tavares, L. R. de Menezes, D. F. do Nascimento, D. H. S. Souza, F. Reynaud, M. F. V. Marques, and M. I. B. Tavares, Eur. Phys. J. Spec. Top. 225, 779 (2016). https://doi.org/10.1140/epjst/e2015-50266-2

    Article  CAS  Google Scholar 

  11. D. Mondal, M. Griffith, and S. S. Venkatraman, Int. J. Polym. Mat. Polym. Biomater. 65, 255 (2016). https://doi.org/10.1080/00914037.2015.1103241

    Article  CAS  Google Scholar 

  12. C. Parisi, G. Longobardi, A. C. E. Graziano, A. Fraix, C. Conte, F. Quaglia, and S. Sortino, Bioorg. Chem. 128, 106 (2022). https://doi.org/10.1016/j.bioorg.2022.106050

    Article  CAS  Google Scholar 

  13. N. H. Mthombeni, S. Mbakop, and M. S. Onyango, Int. J. Environ. Sci. Dev. 6, 602 (2015). https://doi.org/10.7763/IJESD.2015.V6.665

    Article  CAS  Google Scholar 

  14. D. Zadaka-Amir, A. Nasser, S. Nir, and Y. G. Mishael, Microporous Mesoporous Mater. 151, 216 (2012). https://doi.org/10.1016/j.micromeso.2011.10.033

    Article  CAS  Google Scholar 

  15. K.-H. Chung, D. R. Chang, and B. G. Park, Bioresour. Technol. 99, 7438 (2008). https://doi.org/10.1016/j.biortech.2008.02.031

    Article  CAS  PubMed  Google Scholar 

  16. M. Pansini, Miner. Depos. 31, 563 (1996). https://doi.org/10.1007/BF00196137

    Article  CAS  Google Scholar 

  17. K. M. Roghayeh and S. A. Fakhry, Microporous Mesoporous Mater. 120, 285 (2009). https://doi.org/10.1016/j.micromeso.2008.11.027

    Article  CAS  Google Scholar 

  18. C. Colella, Miner. Depos. 31, 554 (1996). https://doi.org/10.1007/BF00196136

    Article  CAS  Google Scholar 

  19. S. A. Nabi, M. Shahadat, R. Bushra, A. H. Shalla, and A. Azam, Colloids Surf., B 87, 122 (2011). https://doi.org/10.1016/j.colsurfb.2011.05.011

    Article  CAS  Google Scholar 

  20. J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastien, C. Casado, and J. Coronas, Chem. Mater. 24, 2829 (2012). https://doi.org/10.1021/cm301435j

    Article  CAS  Google Scholar 

  21. H. Peng, T. Qi, J. Vogrin, Q. Huang, W. Wu, and J. Vaughan, Miner. Eng. 170, 107071 (2021). https://doi.org/10.1016/j.mineng.2021.107071

  22. Q. Song, J. Shen, Y. Yang, J. Wang, Y. Yang, J. Sun, B. Jiang, and Z. Liao, Microporous Mesoporous Mater. 292, 109755 (2020). https://doi.org/10.1016/j.micromeso.2019.109755

  23. C. Belviso, F. Cavalcante, A. Lettino, and S. Fiore, Appl. Clay Sci. 80, 162 (2013). https://doi.org/10.1016/j.clay.2013.02.003

    Article  CAS  Google Scholar 

  24. A. A. B. Maia, R. F. Neves, R. S. Angelica, and H. Pollmann, Clay Miner. 50, 663 (2015). https://doi.org/10.1180/claymin.2015.050.5.09

    Article  CAS  Google Scholar 

  25. F. A. C. M. Passos, D. C. Castro, K. K. Ferreira, K. M. A. Simoes, L. C. Bertolino, C. N. Barbato, F. M. S. Garrido, A. A. S. Felix, and F. A. N. G. Silva, in Characterization of Minerals, Metals, and Materials, Conference Paper, Part of: The Minerals, Metals, and Materials Series (Springer, Cham, 2017), p. 279. https://doi.org/10.1007/978-3-319-51382-9_31

  26. A. V. Borhade, S. G. Wakchaure, A. G. Dholi, and T. A. Kshirsagar, Russ. J. Phys. Chem. A 91, 1183 (2017). https://doi.org/10.1134/S0036024417070081

    Article  CAS  Google Scholar 

  27. W. Franus, M. Wdowin, and M. Franus, Environ. Monit. Assess. 186, 5721 (2014). https://doi.org/10.1007/s10661-014-3815-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. V. Borhade, T. A. Kshirsagar, and A. G. Dholi, Arab. J. Sci. Eng. 42, 4479 (2017). https://doi.org/10.1007/s13369-017-2759-9

    Article  CAS  Google Scholar 

  29. S. Zuo, W. Liu, C. Yao, X. Li, S. Luo, F. Wu, Y. Kong, and X. Liu, Appl. Clay Sci. 119, 170 (2016). https://doi.org/10.1016/j.clay.2015.08.029

    Article  CAS  Google Scholar 

  30. M. Kaiheriman, A. Sidike, A. Maimaitinasier, A. Reheman, and B. Rouzi, J. Lumin. 157, 411 (2015). https://doi.org/10.1016/j.jlumin.2014.08.028

    Article  CAS  Google Scholar 

  31. F. Liu, L. L. Liu, D. Xue, and F.-X. Li, J. Fuel Chem. Technol. 44, 477 (2016). https://doi.org/10.1016/S1872-5813(16)30023-8

    Article  CAS  Google Scholar 

  32. A. V. Borhade, A. G. Dholi, and T. A. Kshirsagar, Russ. J. Phys. Chem. A 94, 370 (2020). https://doi.org/10.1134/S0036024420020065

    Article  CAS  Google Scholar 

  33. A. Finch, Mineral. Mag. 55, 459 (1991). https://doi.org/10.1180/minmag.1991.055.380.15

    Article  CAS  Google Scholar 

  34. Database of Raman Spectroscopy, X-ray Diffraction and Chemistry of Minerals. http://rruff.geo.arizona.edu/AMS/viewJmol.php?amcsd=0018028. Accessed June 30, 2022.

  35. C. Belviso, F. Cavalcante, A. Lettino, and S. Fiore, Appl. Clay Sci. 80, 162 (2013). https://doi.org/10.1016/j.clay.2013.02.003

    Article  CAS  Google Scholar 

  36. M. Irandoost, M. P. Modaress, and V. Javanbakht, J. Water Process. Eng. 32, 100981 (2019). https://doi.org/10.1016/j.jwpe.2019.100981

  37. S. P. Bao, S. C. Tjong, and C. Y. Tang, in Physical Properties and Applications of Polymer Nanocomposites, Woodhead Publishing Series in Composites Science and Engineering, Ed. by Tjong and Y. W. Mai (Woodhead, Cambridge, 2010), p. 280. https://doi.org/10.1533/9780857090249.2.280

  38. A. Hejna, Ł. Zedler, M. P. Romatowska, J. Cañavate, X. Colom, and K Formela, Polymers 12, 1204 (2020). https://doi.org/10.3390/polym12051204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Anbalagan, A. R. Prabakaran, and S. Gunasekaran, J. Appl. Spectrosc. 77, 86 (2010). https://doi.org/10.1007/s10812-010-9297-5

    Article  CAS  Google Scholar 

  40. B. Jaleh and P. Fakhri, in Spectroscopy of Polymer Nanocomposites, Ed. by S. Thomas, D. Rouxel, and D. Ponnamma (William Andrew, 2016), Chap. 5, p. 112. https://doi.org/10.1016/B978-0-323-40183-8.00005-7

    Book  Google Scholar 

  41. R. Augustine, H. N. Malik, D. K. Singhal, D. K. A. Mukherjee, D. Malakar, N. Kalarikkal, and S. Thomas, J. Polym. Res. 21, 347 (2014). https://doi.org/10.1007/s10965-013-0347-6

    Article  CAS  Google Scholar 

  42. N. Doebelin and R. Kleeberg, J. Appl. Crystallogr. 48, 1573 (2015). https://doi.org/10.1107/S1600576715014685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. A. Sholeha, L. Jannah, N. H. Rohma, N. Widiastuti, D. Prasetyoko, A. A. Jalil, and H. Bahruji, Clays Clay Miner. 68, 513 (2020). https://doi.org/10.1007/s42860-020-00089-3

    Article  CAS  Google Scholar 

  44. S. Otieno, C. Kowenje, F. Kengara, and R. Mokaya, Mater. Adv. 2, 5997 (2021). https://doi.org/10.1039/D1MA00449B

    Article  CAS  Google Scholar 

  45. I. Hassan, S. M. Antao, and J. B. Parise, Am. Mineral. 89, 359 (2004). https://doi.org/10.2138/am-2004-2-315

    Article  CAS  Google Scholar 

  46. N. M. Musyoka, Ph. D. Thesis (Univ. Western Cape, Cape Town, South Africa, 2009).

  47. L. Cui, R. Han, L. Yang, Y. Wu, R. Pei, and F. Li, Microporous Mesoporous Mater. 306, 110385 (2020). https://doi.org/10.1016/j.micromeso.2020.110385

  48. H. Y. Kim, B. H. Kim, and M. S. Kim, Materials 15, 366 (2022). https://doi.org/10.3390/ma15010366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Baji, S. C. Wong, T. Liu, T. Li, and T. S. Srivatsan, J. Biomed. Mater. Res. B 81, 343 (2007). https://doi.org/10.1002/jbm.b.30671

    Article  CAS  Google Scholar 

  50. M. S. de S. de B. Monteiro, C. L. Rodrigues, Mater. Sci. Appl. 7, 575 (2016). https://doi.org/10.4236/msa.2016.710048

  51. Y. Huang, N. Dan, W. Dan, and W. Zhao, ACS Omega 4, 22292 (2019). https://doi.org/10.1021/acsomega.9b02217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. R. Balan and V. Gayathri, Polym. Bull. 79, 4269 (2022). https://doi.org/10.1007/s00289-021-03707-9

    Article  CAS  Google Scholar 

  53. W. Sas, M. J. Delaporte, P. Czaja, P. M. Z. Nski, and M. Fitta, Magnetochemistry 7, 61 (2021). https://doi.org/10.3390/magnetochemistry7050061

    Article  CAS  Google Scholar 

  54. A. S. Hadj-Hamou, F. Metref, and F. Yahiaoui, Polym. Bull. 74, 3833 (2017). https://doi.org/10.1007/s00289-017-1929-y

    Article  CAS  Google Scholar 

  55. T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, and P. Dumas, J. Colloid Interface Sci. 273, 381 (2004). https://doi.org/10.1016/j.jcis.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  56. S. Brunauer, P. H. Emmet, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  57. Z. Tauanov, P. E. Tsakiridis, D. Shah, and V. J. Inglezakis, J. Environ. Sci. Health A 54, 95 (2019). https://doi.org/10.1080/10934529.2019.1611129

    Article  CAS  Google Scholar 

  58. M. C. Manique, L. V. Lacerda, A. K. Alves, and C. P. Bergmann, Fuel 190, 268 (2017). https://doi.org/10.1016/j.fuel.2016.11.016

    Article  CAS  Google Scholar 

  59. S. Zeng, R. Wang, Z. Zhang, and S. Qiu, Inorg. Chem. Commun. 70, 168 (2016). https://doi.org/10.1016/j.inoche.2016.06.013

    Article  CAS  Google Scholar 

  60. J. Li, X. Zeng, X. Yang, C. Wang, and X. Luo, Mater. Lett. 161, 157 (2015). https://doi.org/10.1016/j.matlet.2015.08.058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bendouba Mostefa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenza, E., Wafa, A., Abdelhafid, Z. et al. Synthesis and Characterization of Nanocomposite Based on Sodalite and Polycaprolactone. Russ. J. Phys. Chem. 97, 1532–1541 (2023). https://doi.org/10.1134/S0036024423070075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070075

Keywords:

Navigation