Skip to main content
Log in

Quantum Chemical Calculation on the Decomposition Mechanism of Na3AlF6

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum chemical calculation was performed to study the decomposition mechanism and the optimized structure of Na3AlF6 at the density functional theory (DFT). To elucidate the structural properties of the optimized Na3AlF6, the Mayer bond order (MBO) was systematically calculated. Four decomposition pathways of Na3AlF6 are determined, mainly including direct dissociation reactions and reactions with transition states. Various structure of [AlF5]2– complex ions are confirmed in the Na3AlF6 decomposition process, and trigonal bipyramidal and tetragonal pyramidal structures of [AlF5]2– complex are verified in the reactions with transition state and Al1–F2 bond-breaking reaction, respectively. The Raman shift values of the calculated main bands in the Raman spectra of Al–F complexes are in good agreement with the experimental values of the main Raman bands for molten cryolite. This result constructs a detailed decomposition scheme of Na3AlF6 and provides a theoretical basis for the investigation of its ionic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. J. Welch, J. Mater. 51, 24 (1999).

    CAS  Google Scholar 

  2. J. W. Evans, J. Mater. 59, 30 (2007).

    CAS  Google Scholar 

  3. V. N. Nekrasov, A. V. Suzdaltsev, O. V. Limanovskaya, et al., Electrochim. Acta 75, 296 (2012).

    Article  CAS  Google Scholar 

  4. G. Brooks, M. Cooksey, G. Wellwood, et al., Trans. Inst. Min. Metall., Sect. C 116, 25 (2007).

    CAS  Google Scholar 

  5. S. Cikit, Z. Akdeniz, and P. A. Madden, J. Phys. Chem. B 118, 1064 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. E. Robert, J. E. Olsen, V. Danek, et al., J. Phys. Chem. B 101, 9447 (1997).

    Article  CAS  Google Scholar 

  7. M. H. Brooker, R. W. Berg, J. H. von Barner, et al., Inorg. Chem. 39, 3682 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. F. Auguste, O. Tkatcheva, and H. Mediaas, et al., Inorg. Chem. 42, 6338 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. X.-W. Hu, J.-Y. Qu, Z.-W. Wang, et al., Trans. Nonferr. Met. Soc. China 21, 402 (2011).

    CAS  Google Scholar 

  10. M. Lin, X. Hu, Z. Wang, et al., J. Mater. 72, 278 (2020).

    CAS  Google Scholar 

  11. E. Robert, V. Lacassagne, J.-P. Couyures, et al., Inorg. Chem. 38, 214 (1999).

    Article  CAS  Google Scholar 

  12. V. Lacassagne, C. Bessada, D. Massiot, et al., J. Phys. Chem. B 106, 1862 (2002).

    Article  CAS  Google Scholar 

  13. K. Machado, D. Zanghi, C. Bessada, et al., J. Phys. Chem. C 121, 10289 (2017).

    Article  CAS  Google Scholar 

  14. B. Gilbert and T. Materne, Appl. Spectrosc. 44, 299 (1990).

    Article  CAS  Google Scholar 

  15. E. Robert, T. Materne, and B. Gilbert, Vibr. Spectrosc. 6, 71 (1993).

    Article  CAS  Google Scholar 

  16. M. Liška, P. Perichta, and L. T. Nagy, J. Non-Cryst. Solids 192, 309 (1995).

    Article  Google Scholar 

  17. Z. Akdeniz, Z. Çiçek, M. P. Tosi, et al., Mod. Phys. Lett. B 12, 995 (1998).

    Article  CAS  Google Scholar 

  18. M. J. Castiglione, M. Wilson, P. A. Madden, et al., Phys. Chem. Chem. Phys. 1, 165 (1999).

    Article  CAS  Google Scholar 

  19. X. Lv, Z. Xu, J. Li, et al., J. Fluorine Chem. 185, 42 (2016).

    Article  CAS  Google Scholar 

  20. X. Lv, Z. Xu, J. Li, et al., J. Mol. Struct. 1117, 105 (2016).

    Article  CAS  Google Scholar 

  21. X. Lv, Z. Han, H. Zhang, et al., Phys. Chem. Chem. Phys. 21, 7474 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. H. O. Nam, A. Bengtso, K. Vörtler, et al., J. Nucl. Mater. 449, 148 (2014).

    Article  CAS  Google Scholar 

  23. H. Guo, J. Li, H. Zhang, et al., Chem. Phys. Lett. 730, 587 (2019).

    Article  CAS  Google Scholar 

  24. S. Cikit, Z. Akdeniz, and P. A. Madden, J. Phys. Chem. B 118, 1064 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. T. Bučko and F. Šimko, J. Chem. Phys. 144, 064502 (2016).

  26. T. Bučko and F. Šimko, J. Chem. Phys. 148, 064501 (2018).

  27. Y. Shao, L. Molnar, Y. Jung, et al., Phys. Chem. Chem. Phys. 8, 3172 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. G. S. Picard, F. C. Bouyer, M. Leroy, et al., J. Mol. Struct.: Theochem 368, 67 (1996).

    Article  CAS  Google Scholar 

  29. U. Groß, D. Müeller, and E. Kemnitz, Angew. Chem. Int. Ed. 42, 2626 (2003).

    Article  CAS  Google Scholar 

  30. J.-L. You, G.-C. Jiang, H.-Y. Hou, et al., J. Raman Spectrosc. 36, 237 (2005).

    Article  CAS  Google Scholar 

  31. V. Yu. Buz’ko, G. Yu. Chuiko, and Kh. B. Kushkhov, Russ. J. Inorg. Chem. 57, 62 (2012).

    Article  CAS  Google Scholar 

  32. F. Xu, K. Matsumoto, and R. Hagiwara, Dalton Trans. 42, 1965 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. N. Ma, J. You, L. Lu, et al., Materials 11, 1846 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  34. R. R. Nazmutdinov, T. T. Zinkicheva, S. Yu. Vassiliev, et al., Spectrochim. Acta, Part A 75, 1244 (2010).

    Article  CAS  Google Scholar 

  35. R. R. Nazmutdinov, T. T. Zinkicheva, S. Yu. Vassiliev, et al., Chem. Phys. 412, 22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Zhao, Z. Li, Q. Wang, et al., Res. Chem. Intermed. 41, 8471 (2015).

    Article  CAS  Google Scholar 

  37. Y. Fu, X. Wang, X. Li, et al., AIP Adv. 6, 085305 (2016).

  38. P.-P. Zhao, Y.-C. Wang, Y.-M. Jia, et al., Struct. Chem. 29, 1449 (2018).

    Article  CAS  Google Scholar 

  39. Y. Fu, A. Yang, X. Wang, et al., J. Phys. D: Appl. Phys. 52, 245203 (2019).

  40. M. J. Frisch, G. W. Trucks, D. J. Fox, et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  41. C. Y. Legault, CYLview, 1.0b (Univ. Sherbrooke, 2009). http://www.cylview.org

  42. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  43. R. C. Binning, Jr. and L. A. Curtiss, J. Comp. Chem. 11, 1206 (1990).

    Article  CAS  Google Scholar 

  44. I. Mayer, Chem. Phys. Lett. 97, 270 (1983).

    Article  CAS  Google Scholar 

  45. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. S. Grimme, J. Chem. Phys. 124, 034108 (2006).

  47. T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. A. Schäefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).

    Article  Google Scholar 

  49. T. Clark, J. Chrasekhar, G. W. Spitznagel, et al., J. Comput. Chem. 4, 294 (1983).

    Article  CAS  Google Scholar 

  50. D. Michalska and R. Wysokiński, Chem. Phys. Lett. 403, 211 (2005).

    Article  CAS  Google Scholar 

  51. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. T. Lu and F. Chen, J. Mol. Graph. Modell. 38, 314 (2012).

    Article  CAS  Google Scholar 

  53. C. Lefebvre, G. Rubez, H. Khartabil, et al., Phys. Chem. Chem. Phys. 19, 17928 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. X. Hu, B. Li, J. Yu, et al., Characterization of Minerals, Metals, and Materials (Cham, Springer, 2019).

    Google Scholar 

  55. F. Bouyer, G. Picard, and J.-J. Legendre, Int. J. Quantum Chem. 61, 507 (1997).

    Article  CAS  Google Scholar 

  56. A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, et al., J. Chem. Soc., Dalton Trans. 14, 2095 (2001).

    Article  CAS  Google Scholar 

  57. J. S. Murray and P. Politzer, Electrostatic Potentials: Chemical Applications. Encyclopedia of Computational Chemistry (West Sussex, Wiley, 1998).

    Google Scholar 

  58. J. S. Murry and P. Politzer, WIREs Comput. Mol. Sci. 1, 153 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (grant nos. 51974081, 52004062, and 51474060), and Natural Science Foundation of Liaoning Province, China (grant no. 2019-MS-129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwei Hu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, X., Lin, M. et al. Quantum Chemical Calculation on the Decomposition Mechanism of Na3AlF6. Russ. J. Phys. Chem. 96, 1035–1043 (2022). https://doi.org/10.1134/S0036024422050302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422050302

Keywords:

Navigation