Skip to main content
Log in

Theoretical investigation on the gas phase decomposition of ethyl acetate by Ni+

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The density functional theory calculations were performed to systematically investigate the reaction of Ni+ with ethyl acetate in the gas phase. The reactive sites and reactivity were predicted by the average local ionization energy (ALIE). All possible reaction pathways were identified, which led to the formation of ketene or ethanol, two acetal units, and acetic acid or ethylene. The product distribution was discussed by means of the Curtin-Hammett principle. In addition, the properties of the chemical bonding evolution along the reaction pathway were studied using various analysis methods including atoms in molecules (AIM) and natural bond orbital (NBO). The frontier molecular orbital interactions were analyzed. The calculation results confirm that there are three reaction paths, in which the path B is the most favorable path, and acetic acid or ethylene is the main product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hk C, Andrews L (2008). J Phys Chem A 112:12071–12080

    Article  CAS  Google Scholar 

  2. Perera M, Metz RB, Kostko O, Ahmed M (2013). Angew Chem 125:922–925

    Article  Google Scholar 

  3. Cox RM, Armentrout PB, Jong WA (2015). Inorg Chem 54:3584–3599

    Article  CAS  PubMed  Google Scholar 

  4. Li P, Niu WX, Gao T (2014). RSC Adv 4:29806–29817

    Article  CAS  Google Scholar 

  5. Andrews L, Cho HG (2006). Organometallics 25:4040

    Article  CAS  Google Scholar 

  6. Cho HG, Andrews L (2009). J Phys Chem A 113:5073–5081

    Article  CAS  PubMed  Google Scholar 

  7. Holthausen MC, Koch W (1996). J Am Chem Soc 118:9932–9940

    Article  CAS  Google Scholar 

  8. Ma Y, Guo WY, Zhao LM, Hu SQ, Zhang J, Fu QT, Chen XF (2007). J Phys Chem A 111:6208–6216

    Article  CAS  PubMed  Google Scholar 

  9. Schroden JJ, Teo M, Davis HF (2002). J Chem Phys 117:9258

    Article  CAS  Google Scholar 

  10. Carpenter CJ, Koppen PAM, Bowers MT (1995). J Am Chem Soc 117:10976

    Article  CAS  Google Scholar 

  11. Chen XF, Zang H, Yeung HS, Lu XQ, Chan TWD (2012). J Mass Spectrom 47:1518–1525

    Article  CAS  PubMed  Google Scholar 

  12. Li LC, Liu JL, Shang J, Wang X, Wong NB (2007). J Theor Comput Chem 6:323–330

    Article  CAS  Google Scholar 

  13. Zhao LM, Guo WY, Zhang RR, Wu SJ, Lu XQ (2006). ChemPhysChem 7:1345–1354

    Article  CAS  PubMed  Google Scholar 

  14. Guo WY, Yuan T, Chen XF, Zhao LM, Wu SJ (2006). J Mol Struct THEOCHEM 764:177–186

    Article  CAS  Google Scholar 

  15. Zhao LM, Zhang RR, Guo WY, Lu XQ (2006). Chem Phys Lett 431:56–61

    Article  CAS  Google Scholar 

  16. Sonnenfroh DM, Farrar JM (1986). J Am Chem Soc 108:3521–3522

    Article  CAS  Google Scholar 

  17. Schroden JJ, Davis HF, Bayse CA (2007). J Phys Chem A 111:11421–11429

    Article  CAS  PubMed  Google Scholar 

  18. Zhao LM, Zhang RR, Guo WY, Wu SJ, Lu XQ (2005). Chem Phys Lett 414:28

    Article  CAS  Google Scholar 

  19. Noll RJ, Yi SS, Weisshaar JC (1998). J Phys Chem A 102:386–394

    Article  CAS  Google Scholar 

  20. Chen XF, Guo WY, Zhao LM, Fu QT, Ma Y (2007). J Phys Chem A 111:3566–3570

    Article  CAS  PubMed  Google Scholar 

  21. Dee SJ, Castleberry VA, Villarroel OJ, Laboren IE, Bellert DJ (2010). J Phys Chem A 114:1783–1789

    Article  CAS  PubMed  Google Scholar 

  22. Mansell A, Theis Z, Gutierrez MG, Faza ON, Lopez CS, Bellert DJ (2016). J Phys Chem A 120:2275–2284

    Article  CAS  PubMed  Google Scholar 

  23. Zhao PP, Wang YC, Sheng Y, Jia YM (2017). Comput Theor Chem 1114:140–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dee SJ, Castleberry VA, Villarroel OJ, Laboren IE, Frey SE, Ashley D, Bellert DJ (2009). J Phys Chem A 113:14074–14080

    Article  CAS  PubMed  Google Scholar 

  25. Castleberry VA, Dee SJ, Villarroel OJ, Laboren IE, Frey SE, Bellert DJ (2009). J Phys Chem A 113:10417–10424

    Article  CAS  PubMed  Google Scholar 

  26. Laboren IE, Villarroel OJ, Dee SJ, Castleberry VA, Klausmeyer K, Beller DJ (2011). J Phys Chem A 115:1810–1820

    Article  CAS  PubMed  Google Scholar 

  27. López CS, Faza ON, Mansell A, Bellert ZTD (2017). Organometallics 36:761–766

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, BaronenV MB, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  29. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Dunning TH, Peterson KA, Wilson AK (2001). J Chem Phys 114:9244

    Article  CAS  Google Scholar 

  31. Truhlar DG (1998). Chem Phys Lett 294:45–48

    Article  CAS  Google Scholar 

  32. Chen XF, Guo WY, Zhao LM, Fu QT (2006). Chem Phys Lett 432:27–32

    Article  CAS  Google Scholar 

  33. La MJ, Wang YC, Wang CL, Ji DF, Jin YZ, Nian JY, Ma WP (2012). Comput Theor Chem 979:128–134

    Article  CAS  Google Scholar 

  34. Gonzalez C, Schlegel HB (1989). J Phys Chem 90:2154

    Article  CAS  Google Scholar 

  35. Gonzalez C, Schlegel HB (1990). J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  36. Xie M, Wang J, Bai FQ, Hao L, Zhang HX (2015). Dyes Pigments 120:74

    Article  CAS  Google Scholar 

  37. Manzetti S, Lu T (2013). J Phys Org Chem 26:473

    Article  CAS  Google Scholar 

  38. Bader RFW (1991). Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  39. Lu T, Chen F (2012). J Mol Graph Model 38:314

    Article  CAS  PubMed  Google Scholar 

  40. Li S, Wang YC, Wang XL, Zhang YW (2016). Comput Theor Chem 1096:74–79

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    Article  CAS  PubMed  Google Scholar 

  42. Haupert L, Poutsma JC, Wenthold PG (2009). Chem Res 42:1480–1488

    Article  CAS  Google Scholar 

  43. Jin YZ, Wang YC, Ji DF (2013). Comput Theor Chem 1011:75–81

    Article  CAS  Google Scholar 

  44. Shakerzadeh E (2016). Phys E 78:1–9

    Article  CAS  Google Scholar 

  45. Cremer D, Kraka E (1984). Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  46. Santo ED, Michelini MC, Russo N (2009). Organometallics 28:3716–3726

    Article  CAS  Google Scholar 

  47. Stalke D (2011). Chem Eur J 17:9264–9278

    Article  CAS  PubMed  Google Scholar 

  48. Wang XL, Wang YC, Li S, Zhang YW (2017). Int J Quantum Chem:e25412

  49. Niu WX, Zhang H, Li P, Gao T (2015). Int J Quantum Chem 115:6–18

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to the financial support from the National Natural Science Foundation of China (Grant No. 21263023) and support from the Supercomputing Center of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Cheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, PP., Wang, YC., Jia, YM. et al. Theoretical investigation on the gas phase decomposition of ethyl acetate by Ni+. Struct Chem 29, 1449–1456 (2018). https://doi.org/10.1007/s11224-018-1125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1125-1

Keywords

Navigation