Skip to main content

Advertisement

Log in

Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba2Na3(B3O6)2F (P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba2Na3(B3O6)2F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba2Na3(B3O6)2F into the BaB2O4, NaBO2, and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’ DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba2Na3(B3O6)2F at 3 GPa and its decomposition into BaB2O4, NaBO2, and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba2Na3(B3O6)2F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Bekker, A.E. Kokh, N.G. Kononova, P.P. Fedorov, and S.V. Kuznetsov, Crystal growth and phase equilibria in the BaB2O4–NaF system, Cryst. Growth Des., 9(2009), No. 9, p. 4060.

    Article  CAS  Google Scholar 

  2. X. Wang, M.J. Xia, and R.K. Li, A promising birefringent crystal Ba2Na3(B3O6)2F, Opt. Mater., 38(2014), p. 6.

    Article  Google Scholar 

  3. H. Zhang, M. Zhang, S.L. Pan, et al., Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials, Cryst. Growth Des., 15(2015), No. 1, p. 523.

    Article  Google Scholar 

  4. T.B. Bekker, V.N. Vedenyapin, and A.G. Khamoyan, Birefringence of the new fluoride borates Ba2Na3[B3O6]2F and Ba7(BO3)4−yF2+3y in the Na, Ba, B//O, F quaternary reciprocal system, Mater. Res. Bull., 91(2017), p. 54.

    Article  CAS  Google Scholar 

  5. V.D. Antsygin, A.A. Mamrashev, N.A. Nikolaev, O.I. Potaturkin, T.B. Bekker, and V.P. Solntsev, Optical properties of borate crystals in terahertz region, Opt. Commun., 309(2013), p. 333.

    Article  CAS  Google Scholar 

  6. M. Marezio, H.A. Plettinger, and W.H. Zachariasen, The bond lengths in the sodium metaborate structure, Acta Crystallogr., 16(1963), No. 7, p. 594.

    Article  CAS  Google Scholar 

  7. W. Schneider and G.B. Carpenter, Bond lengths and thermal parameters of potassium metaborate, K3B3O6, Acta Crystallogr. Sect. B, 26(1970), No. 8, p. 1189.

    Article  CAS  Google Scholar 

  8. S. Schmid and W. Schnick, Rubidium metaborate, Rb3B3O6, Acta Crystallogr. C, 60(2004), No. Pt7, p. i69.

    Article  Google Scholar 

  9. M. Schläger and R. Hoppe, Darstellung und kristallstruktur von CsBO2, Z. Anorg. Allg. Chem., 620(1994), No. 11, p. 1867.

    Article  Google Scholar 

  10. A.D. Mighell, A. Perloff, and S. Block, The crystal structure of the high temperature form of Barium borate, BaOB2O3, Acta Crystallogr., 20(1966), No. 6, p. 819.

    Article  CAS  Google Scholar 

  11. R. Bubnova, S. Volkov, B. Albert, and S. Filatov, Borates—Crystal structures of prospective nonlinear optical materials: High anisotropy of the thermal expansion caused by anharmonic atomic vibrations, Crystals, 7(2017), No. 3, art. No. 93.

    Google Scholar 

  12. J. Liebertz, Struktur und kristallchemie von Ba2M(B3O6)2 mit M = Ca, Cd, Mg, Co and Ni, Z. Kristallogr. Cryst. Mater., 168(1984), No. 1–4, p. 293.

    CAS  Google Scholar 

  13. G. Sohr, D.M. Többens, J. Schmedt auf der Günne, and H. Huppertz, HP-CsB5O8: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates, Chem. Eur. J., 20(2014), No. 51, p. 17059.

    Article  CAS  Google Scholar 

  14. H.F. Dong, A.R. Oganov, V.V. Brazhkin, et al., Boron oxides under pressure: Prediction of the hardest oxides, Phys. Rev. B, 98(2018), No. 17, art. No. 174109.

    Google Scholar 

  15. D. Vitzthum, K. Wurst, J.M. Pann, P. Brüggeller, M. Seibald, and H. Huppertz, Exploration into the syntheses of gallium- and indiumborates under extreme conditions: M5B12O25(OH): Structure, luminescence, and surprising photocatalytic properties, Angew. Chem. Int. Ed., 57(2018), No. 35, p. 11451.

    Article  CAS  Google Scholar 

  16. N.E. Sagatov, T.B. Bekker, I.V. Podborodnikov, and K.D. Litasov, First-principles investigation of pressure-induced structural transformations of barium borates in the BaO–B2O3–BaF2 system in the range of 0–10 GPa, Comput. Mater. Sci., 199(2021), art. No. 110735.

  17. T.B. Bekker, I.V. Podborodnikov, N.E. Sagatov, et al., γ-BaB2O4: High-pressure high-temperature polymorph of barium borate with edge-sharing BO4 tetrahedra, Inorg. Chem., 61(2022), No. 4, p. 2340.

    Article  CAS  Google Scholar 

  18. H. Huppertz and B. von der Eltz, Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra, J. Am. Chem. Soc., 124(2002), No. 32, p. 9376.

    Article  CAS  Google Scholar 

  19. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169.

    Article  CAS  Google Scholar 

  20. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758.

    Article  CAS  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.

    Article  CAS  Google Scholar 

  22. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188.

    Article  Google Scholar 

  23. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125(2006), No. 22, art. No. 224106.

    Google Scholar 

  24. V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun., 267(2021), art. No. 108033.

  25. F.W. Aquino, R. Shinde, and B.M. Wong, Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach, J. Comput. Chem., 41(2020), No. 12, p. 1200.

    Article  CAS  Google Scholar 

  26. B.G. Janesko, Replacing hybrid density functional theory: Motivation and recent advances, Chem. Soc. Rev., 50(2021), No. 15, p. 8470.

    Article  CAS  Google Scholar 

  27. R. Shinde, S.S.R.K.C. Yamijala, and B.M. Wong, Improved band gaps and structural properties from Wannier-Fermi-Löwdin self-interaction corrections for periodic systems, J. Phys.: Condens. Matter, 33(2021), No. 11, art. No. 115501.

    Google Scholar 

  28. A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater., 108(2015), p. 1.

    Article  CAS  Google Scholar 

  29. A. Fonari and S. Stauffer, Vasp_raman.py, 2013 [2016-09-21]. https://github.com/raman-sc.

  30. Q.J. Zheng, VaspVib2XSF, 2020 [2022-11-08]. https://github.com/QijingZheng/VaspVib2XSF.

  31. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng., 18(2010), No. 1, art. No. 015012.

    Google Scholar 

  32. J.M. Leger, J. Haines, A. Atouf, O. Schulte, and S. Hull, High-pressure X-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds, Phys. Rev. B, 52(1995), No. 18, p. 13247.

    Article  CAS  Google Scholar 

  33. V.T. Deshpande, Thermal expansion of sodium fluoride and sodium bromide, Acta Crystallogr., 14(1961), No. 7, art. No. 794.

    Google Scholar 

  34. S.M. Fang, The crystal structure of sodium metaborate Na3(B3O6), Z. Kristallogr. Cryst. Mater., 99(1938), No. 1–6, p. 1.

    Article  CAS  Google Scholar 

  35. F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90(2014), No. 22, art. No. 224104.

    Google Scholar 

  36. T.B. Bekker, T.M. Inerbaev, A.P. Yelisseyev, et al., Experimental and ab initio studies of intrinsic defects in “antizeolite” borates with a Ba12(BO3) 6+6 framework and their influence on properties, Inorg. Chem., 59(2020), No. 18, p. 13598.

    Article  CAS  Google Scholar 

  37. C. Wu, J.L. Song, L.H. Li, M.G. Humphrey, and C. Zhang, Alkali metal-alkaline earth metal borate crystal LiBa3(OH) (B9O16)[B(OH)4]as a new deep-UV nonlinear optical material, J. Mater. Chem. C, 4(2016), No. 35, p. 8189.

    Article  CAS  Google Scholar 

  38. A. Jain, S.P. Ong, G. Hautier, et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002.

    Google Scholar 

  39. S.M. Wan, X.A. Zhang, S.J. Zhao, et al., Growth units and growth habit of α-BaB2O4 crystal, J. Appl. Crystallogr., 40(2007), No. 4, p. 725.

    Article  CAS  Google Scholar 

  40. X.S. Lv, Y.L. Sun, J. Han, et al., Growth and Raman spectrum of Ba2Mg(B3O6)2 crystal, J. Cryst. Growth, 363(2013), p. 220.

    Article  CAS  Google Scholar 

  41. P. Ney, M.D. Fontana, A. Maillard, and K. Polgár, Assignment of the Raman lines in single crystal barium metaborate, J. Phys.: Condens. Matter, 10(1998), No. 3, p. 673.

    CAS  Google Scholar 

  42. Y.K. Voronko, A.A. Sobol, and V.E. Shukshin, Structure of boron–oxygen groups in crystalline, molten, and glassy alkalimetal and alkaline-earth metaborates, Inorg. Mater., 48(2012), No. 7, p. 732.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The SEM and EDX studies of experimental samples were performed in the Analytical Center for Multielemental and Isotope Research SB RAS. This work was financially supported by the Russian Science Foundation (No. 21-19-00097) https://rscf.ru/project/21-19-00097/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nursultan E. Sagatov.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Supplementary material, approximately 94.3 KB.

Supplementary material, approximately 267 KB.

Supplementary material, approximately 222 KB.

Supplementary material, approximately 259 KB.

Supplementary material, approximately 245 KB.

Supplementary material, approximately 228 KB.

Supplementary material, approximately 414 KB.

Supplementary material, approximately 322 KB.

Supplementary material, approximately 404 KB.

Supplementary material, approximately 348 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagatov, N.E., Bekker, T.B., Vinogradova, Y.G. et al. Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa. Int J Miner Metall Mater 30, 1846–1854 (2023). https://doi.org/10.1007/s12613-023-2647-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2647-0

Keywords

Navigation