Skip to main content
Log in

TiS2 As Negative Electrode Material for Sodium-Ion Electric Energy Storage Devices

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Titanium disulfide (TiS2) was synthesized by a simple solid phase method. The physical properties of TiS2 were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX). Scanning and transmission electron microscopy (SEM and TEM) were used to study the structural and morphological characteristics. The synthesized TiS2 was applied as negative electrode material for TiS2/graphite electric storage devices with organic electrolytes based on Na+-ions. The electrochemical methods were used to characterize the charge storage mechanism of TiS2. The TiS2/graphite electric energy storage device possessed a working voltage of 3.5 V. The fabricated device showed relatively high performance rate and excellent cycle stability in electrochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Z. Jiang, Y. H. Li, J. Zhu, B. Li, C. C. Li, L. Wang, W. Meng, Z. X. He, and L. Dai, J. Alloys Compd. 791, 176 (2019).

    Article  CAS  Google Scholar 

  2. P. C. Liu, L. Xiao, Y. W. Tang, Y. F. Chen, L. G. Ye, and Y. R. Zhu, J. Therm. Anal. Calorim. 136, 1323 (2019).

    Article  CAS  Google Scholar 

  3. Z. C. Song, X. L. Lu, Q. Hu, J. Ren, W. Q. Zhang, Q. J. Zheng, and D. M. Lin, J. Power Sources 421, 23 (2019).

    Article  CAS  Google Scholar 

  4. D. Lepage, L. Savignac, M. Saulnier, S. Gervais, and S. B. Schougaard, Electrochem. Commun. 102, 1 (2019).

    Article  CAS  Google Scholar 

  5. Q. L. Fan, S. D. Yang, J. Liu, H. D. Liu, K. J. Lin, R. Liu, C. Y. Hong, L. Y. Liu, Y. Chen, K. An, P. Liu, Z. C. Shi, and Y. Yang, J. Power Sources 421, 91 (2019).

    Article  CAS  Google Scholar 

  6. C. Zhang, L. Shen, J. Q. Shen, F. Liu, G. Chen, R. Tao, S. X. Ma, Y. T. Peng, and Y. F. Lu, Adv. Mater. 31, e1808338 (2019).

    Article  Google Scholar 

  7. L. P. Zhao, G. Liu, P. Zhang, L. Q. Sun, L. N. Cong, T. Wu, B. H. Zhang, W. Lu, H. M. Xie, and H. Y. Wang, RSC Adv. 9, 16571 (2019).

  8. J. D. Huang, Z. X. Wei, J. Q. Liao, W. Ni, C. Y. Wang, and J. M. Ma, J. Energy Chem. 33, 100 (2019).

    Article  Google Scholar 

  9. J. K. Meng, W. W. Wang, Q. C. Wang, M. H. Cao, Z. Y. Fu, X. J. Wu, and Y. N. Zhou, Electrochim. Acta 303, 32 (2019).

    Article  CAS  Google Scholar 

  10. D. Kumar and D. K. Kanchan, J. Energy Storage 22, 44 (2019).

    Article  Google Scholar 

  11. X. H. Rong, X. G. Qi, Y. X. Lu, Y. S. Wang, Y. M. Li, L. W. Jiang, K. Yang, F. Gao, X. J. Huang, L. Q. Chen, and Y. S. Hu, J. Energy Chem. 31, 132 (2019).

    Article  Google Scholar 

  12. T. C. Yuan, Y. X. Wang, J. X. Zhang, X. J. Pu, X. P. Ai, Z. X. Chen, H. X. Yang, and Y. L. Cao, Nano Energy 56, 160 (2019).

    Article  CAS  Google Scholar 

  13. X. L. Zhang, X. X. Liu, C. Yang, N. Li, T. Y. Ji, K. Yan, B. Zhu, J. H. J. P. Zhao, and Y. Li, Surf. Coat. Technol. 358, 661 (2019).

    Article  CAS  Google Scholar 

  14. J. R. Shi, Y. P. Wang, Q. Su. F. Y. Cheng, X. Z. Kong, J. D. Lin, T. Zhu, S. Q. Liang, and A. Q. Pan, Chem. Eng. J. 353, 606 (2018).

    Article  CAS  Google Scholar 

  15. D. A. Stevens and J. R. Dahn, J. Electrochem. Soc. 147, 1271 (2000).

    Article  CAS  Google Scholar 

  16. D. A. Stevens and J. R. Dahn, J. Electrochem. Soc. 147, 4428 (2000).

    Article  CAS  Google Scholar 

  17. L. P. Zhao, L. Qi, and H. Y. Wang, J. Power Sources 242, 597 (2013).

    Article  CAS  Google Scholar 

  18. L. P. Zhao, L. Qi, and H. Y. Wang, RSC Adv. 5, 15431 (2015).

  19. Z. Hu, Q. Liu, S. L. Chou, and S. X. Dou, Adv. Mater. 29, 1700606 (2017).

    Article  Google Scholar 

  20. G. A. Muller, J. B. Cook, H. S. Kim, S. H. Tolbert, and B. Dunn, Nano Lett. 15, 1911 (2015).

    Article  CAS  Google Scholar 

  21. B. Tian, W. Tang, K. Leng, Z. Chen, S. J. R. Tan, C. Peng, G. H. Ning, W. Fu, C. Su, G. W. Zheng, and K. P. Loh, ACS Energy Lett. 2, 1835 (2017).

    Article  CAS  Google Scholar 

  22. S. H. Chung, L. Luo, and A. Manthiram, ACS Energy Lett. 3, 568 (2018).

    Article  CAS  Google Scholar 

  23. K. Sun, Q. Zhang, D. C. Bock, X. Tong, D. Su, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, and H. Gan, J. Electrochem. Soc. 0164, A1291 (2017).

    Article  CAS  Google Scholar 

  24. Y. Y. Zhao, W. L. Cai, Y. T. Fang, H. S. Ao, Y. C. Zhu, and Y. T. Qian, ChemElectroChem 8, 2231 (2019).

    Article  Google Scholar 

  25. D. Y. Oh, Y. E. Choi, D. H. Kim, Y. G. Lee, B. S. Kim, J. Park, H. Sohn, and Y. S. Jung, J. Mater. Chem. A 4, 10329 (2016).

    Article  CAS  Google Scholar 

  26. A. Unemoto, T. Ikeshoji, S. Yasaku, M. Matsuo, V. Stavila, T. J. Udovic, and S. Orimo, Chem. Mater. 27, 5407 (2015).

    Article  CAS  Google Scholar 

  27. L. Ma, S. Y. Wei, H. L. L. Zhuang, K. E. Hendrickson, R. G. Hennig, and L. A. Archer, J. Mater. Chem. A 3, 19857 (2015).

    Article  CAS  Google Scholar 

  28. J. E. Trevey, C. R. Stoldt, and S. H. Lee, J. Electrochem. Soc. 158, A1282 (2011).

    Article  CAS  Google Scholar 

  29. D. S. Tchitchekova, A. Ponrouch, R. Verrelli, T. Broux, C. Frontera, A. Sorrentino, F. Barde, N. Biskup, M. E. Arroyo-de Dompablo, and M. R. Palacin, Chem. Mater. 30, 847 (2019).

    Article  Google Scholar 

  30. S. H. Chung and A. Manthiram, Adv. Energy Mater. 9, 13289 (2019).

    Google Scholar 

  31. X. Sun, P. Bonnick, and L. F. Nazar, ACS Energy Lett. 1, 297 (2016).

    Article  CAS  Google Scholar 

  32. D. S. Tchitchekova, A. Ponrouch, R. Verrelli, T. Broux, C. Frontera, A. Sorrentino, F. Bardé, N. Biskup, M. E. Arroyo-de Dompablo, and M. R. Palacín, Chem. Mater. 30, 847 (2018).

    Article  CAS  Google Scholar 

  33. X. Q. Sun, P. Bonnick, and L. F. Nazar, ACS Energy Lett. 1, 297 (2016).

    Article  CAS  Google Scholar 

  34. L. P. Zhao, G. Liu, P. Zhang, L. Q. Sun, L. N. Cong, W. Lu, Q. Q. Sun, H. M. Xie, and H. Y. Wang, Chem. Pap. 73, 2583 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Doctoral Research Initiation Fund Project of Jilin Engineering Normal University (BSKJ201823, BSKJ201921), Jilin Province Industrial Innovation Special Fund Project (2019C056-1), Jilin Province Science and Technology Development Plan Project (20200403152SF), and Jilin Province Innovation and Entrepreneurship Talent Funding Project (2020014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Zhao or Peng Zhang.

Ethics declarations

No conflict of interests is declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Liu, G., Wang, Y. et al. TiS2 As Negative Electrode Material for Sodium-Ion Electric Energy Storage Devices. Russ. J. Phys. Chem. 95, 1955–1961 (2021). https://doi.org/10.1134/S0036024421090120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090120

Keywords:

Navigation