Skip to main content
Log in

Estimation of Viscosity of Alloys Using Gibbs Free Energy of Mixing and Geometric Model

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the present work, using mixing Gibbs free energies and Chou’s general solution model (GSM), by considering the excess activation energies from the binary subsystems, the viscosities of the simple ternary Au–Ag–Cu, Al–Cu–Si, and Fe–Ni–Co and liquid alloys of binary subsystems have been evaluated via well known Chou model and physical models, such as Kaptay, Kozlov–Romanov–Petrov (KRP), and Schick et al. at temperatures 1373, 1375, and 1873 K. A comparison between the evaluated results and experimental values of the Au–Ag–Cu, Al–Cu–Si, and Fe–Ni–Co ternary alloys was carried out. In this study, the success of the application of the aforementioned geometric and physical models to the viscosity calculations of the alloys discussed and the viscosite data are presented to the literature. In order to determine the applicability success, the mean square deviation analysis was performed. According to the values in this table, Schick et al. and KRP models which are derived from the physical quantities among the models discussed provide best description of the viscosity for the Al–Cu–Si and Au–Ag–Cu alloys, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. E. Moelwyn-Hughes, Physical Chemistry (Pergamon, Oxford, 1961), p. 798.

    Google Scholar 

  2. Z. Morita, T. Iida, and M. Ueda, Liq. Met. 1976, 600 (1977).

    Google Scholar 

  3. L. Y. Kozlov, L. Romanov, and N. Petrov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 7 (1983).

  4. M. Kucharski, Z. Metallkd. 77, 393 (1986).

    CAS  Google Scholar 

  5. M. J. Hirai, ISIJ. Int. 33, 251 (1993).

    Article  CAS  Google Scholar 

  6. S. D. J. M. Seetharaman and M. T. B. Sichen, Metall. Mater. Trans. B 25, 589 (1994).

    Article  Google Scholar 

  7. G. Kaptay, in Proceedings of MicroCAD 2003 International Conference, 2003, p. 23.

  8. G. Toop, Trans. TMS-AIME 223, 850 (1965).

    Google Scholar 

  9. M. Hillert, Calphad 4, 1 (1980).

    Article  CAS  Google Scholar 

  10. F. Kohler, Monatsh. Chem. 91, 738 (1960).

    Article  CAS  Google Scholar 

  11. Y. M. Muggianu, M. Gambino, and J. Bros, J. Chim. Phys. Phys.-Chim. Biol. 72, 83 (1975).

    Article  CAS  Google Scholar 

  12. K.-C. Chou, Calphad 19, 315 (1995).

    Article  CAS  Google Scholar 

  13. S. Z. Beer, Liquid Metals: Chemistry and Physics (Marcel Dekker, New York, 1972).

    Google Scholar 

  14. T. Faber, Introduction to the Theory of Liquid Metals (Cambridge Univ. Press, London, 1972).

    Google Scholar 

  15. Y. Sato, Trend of Energy Consumption in Residential and Commercial Sector (The Ministry of Economy, Trade and Industry, Japan, 2004).

    Google Scholar 

  16. K. C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead, 2002).

    Book  Google Scholar 

  17. D. Wang and R. A. Overfelt, J. Thermophys. 23, 1063 (2002).

  18. T. Yamasaki, S. Kanatani, Y. Ogino, et al., J. Non-Cryst. Solids 156, 441 (1993).

    Article  Google Scholar 

  19. P. Arsentev and K. Polyakova, Sov. Non-Ferr. Met. Res. 5, 53 (1977).

    Google Scholar 

  20. M. Pakiewicz, Ph. D. Dissertation (Syracuse Univ., New York, 1970).

  21. E. Gebhardt, M. Becker, and S. Dorner, Aluminium 31, 315 (1955).

    Google Scholar 

  22. E. Rothwell, in Handbook of the Physicochemical Properties of the Elements, Ed. by G. V. Samsonov (Plenum, Washington, DC, 1961–1962), p. 389.

  23. M. Kehr, W. Hoyer, and I. Egry, J. Thermophys. 28, 1017 (2007).

  24. J. Brillo, R. Brooks, I. Egry, et al., Int. J. Mater. Res. 98, 457 (2007).

    Article  CAS  Google Scholar 

  25. H. Schenck, M. G. Frohberg, and K. Hoffmann, Arch. Eisenhüttenwesen 34, 93 (1963).

    Article  CAS  Google Scholar 

  26. G. Cavalier, in Proceedings of the Symposium on the Physical Chemistry of Metallic Solutions and Intermetallic Compounds, 1959, p. 2.

  27. R. Barfield and J. Kitchener, J. Iron Steel Inst. 180, 324 (1955).

    CAS  Google Scholar 

  28. E. Gebhardt, M. Becker, and S. Schafer, Z. Metallkd. 43, 292 (1952).

    CAS  Google Scholar 

  29. E. Gebhardt and G. Worwag, Z. Metallkd. 42, 358 (1951).

    CAS  Google Scholar 

  30. T. Iida, Z.-I. Morita, and S. Takeuchi, J. Jpn. Inst. Met. 39, 1169 (1975).

    Article  CAS  Google Scholar 

  31. F. Lihl, E. Nachtigall, and A. Schwaiger, Z. Metallkd. 59, 213 (1968).

    CAS  Google Scholar 

  32. M. Culpin, Proc. Phys. Soc., Sect. B 70, 1079 (1957).

    Google Scholar 

  33. E. Gebhardt, M. Becker, and H. Sebastian, Z. Metallkd. 46, 669 (1955).

    CAS  Google Scholar 

  34. Y. Sato, Y. Kameda, T. Nagasawa, et al., J. Cryst. Growth 249, 404 (2003).

    Article  CAS  Google Scholar 

  35. S. Nishimura, S. Matsumoto, and K. Terashima, J. Cryst. Growth 237, 1667 (2002).

    Article  Google Scholar 

  36. Z. Zhou, S. Mukherjee, and W.-K. Rhim, J. Cryst. Growth 257, 350 (2003).

    Article  CAS  Google Scholar 

  37. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, et al., Metall. Mater. Trans. A 39, 3040 (2008).

    Article  Google Scholar 

  38. N. Y. Konstantinova and P. Popel, J. Phys.: Conf. Ser. 98, 2008, 062022.

    Google Scholar 

  39. M. Schick, J. Brillo, I. Egry, et al., J. Mater. Sci. 47, 8145 (2012).

    Article  CAS  Google Scholar 

  40. H. A. Friedrichs, L. W. Ronkow, and Y. Zhou, Steel Res. 68, 209 (1997).

    Article  CAS  Google Scholar 

  41. J. Schmitz, B. Hallstedt, J. Brillo, et al., J. Mater. Sci. 47, 3706 (2012).

    Article  CAS  Google Scholar 

  42. J. Brillo, I. Egry, and J. Westphal, Int. J. Mater. Res. 99, 162 (2008).

    Article  CAS  Google Scholar 

  43. M. Adachi, M. Schick, J. Brillo, et al., J. Mater. Sci. 45, 2002 (2010).

    Article  CAS  Google Scholar 

  44. S. Gruner and W. Hoyer, J. Alloys Compd. 460, 496 (2008).

    Article  CAS  Google Scholar 

  45. E. Gebhardt and M. Becker, Z. Metallkd. 42, 111 (1951).

    CAS  Google Scholar 

  46. E. Gebhardt and G. Worwag, Z. Metallkd. 43, 106 (1952).

    CAS  Google Scholar 

  47. X. Zhong, Y. Liu, K.-C. Chou, et al., J. Phase Equilib. 24, 7 (2003).

    Article  CAS  Google Scholar 

  48. S. Morioka, Mater. Sci. Eng.: A 362, 223 (2003).

    Article  Google Scholar 

  49. D. Živković and D. Manasijević, Calphad 29, 312 (2005).

    Article  Google Scholar 

  50. M. G. Frohberg and R. Weber, Rheol. Acta 3, 238 (1964).

    Article  CAS  Google Scholar 

  51. N. Bodakin, B. Baum, and G. Tyagunov, Chern Metall. 7, 9 (1978).

    Google Scholar 

  52. S. Watanabe, Trans. Jpn. Inst. Met. 12, 17 (1971).

    Google Scholar 

  53. Y. Sato, K. Sugisawa, D. Aoki, et al., Meas. Sci. Technol. 16, 363 (2005).

    Article  CAS  Google Scholar 

  54. N. Bodakin, B. Baum, and G. Tyagunov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5 18 (1977).

  55. A. Adachi, Z. Morita, Y. Ogino, et al., in Proceedings of the 2nd International Conference on Properties of Liquid Metals, 1973, p. 561.

  56. S. Seetharaman, D. Sichen, and F.-Z. Ji, Metall. Mater. Trans. B 31, 105 (2000).

    Article  Google Scholar 

  57. K.-C. Chou and S.-K. Wei, Trans. Jpn. Inst. Met. 28, 439 (1997).

    Google Scholar 

  58. Y. Liu, X. Lv, C. Bai, et al., J. Ind. Eng. Chem. 30, 106 (2015).

    Article  Google Scholar 

  59. Y. Liu, X. Lv, and C. Bai, ISIJ Int. 57, 1296 (2017).

    Article  CAS  Google Scholar 

  60. G.-H. Zhang and K.-C. Chou, Fluid Phase Equilib. 286, 28 (2009).

    Article  CAS  Google Scholar 

  61. G.-H. Zhang and K.-C. Chou, J. Solut. Chem. 39, 1200 (2010).

    Article  CAS  Google Scholar 

  62. A. Dogan and H. Arslan, Philos. Mag. 98, 37 (2018).

    Article  CAS  Google Scholar 

  63. A. Dogan and H. Arslan, Philos. Mag. 96, 2887 (2016).

    Article  CAS  Google Scholar 

  64. A. Dogan and H. Arslan, Philos. Mag. 99, 267 (2019).

    Article  CAS  Google Scholar 

  65. A. Dogan and H. Arslan, Philos. Mag. 96, 459 (2016).

    Article  CAS  Google Scholar 

  66. T. Miki, N. Ogawa, T. Nagasaka, et al., ISIJ Int. 42, 1071 (2002).

    Article  CAS  Google Scholar 

  67. N. Saunders and A. Miodownik, in Phase Diagrams of Binary Copper Alloys, Ed. by P. R. Subramanian, D. J. Chakrabarti, and D. E. Laughlin (ASM Int., Materials Park, 1994), p. 412.

    Google Scholar 

  68. S. Hassam, J. Ägren, M. Gaune-Escard, et al., Metall. Trans. A 21, 1877 (1990).

    Article  Google Scholar 

  69. B. Sundman, S. G. Fries, and W. A. Oates, CALPHAD 22, 335 (1998).

    Article  CAS  Google Scholar 

  70. A. Kusoffsky, Acta Mater. 50, 5139 (2002).

    Article  CAS  Google Scholar 

  71. A. Morachevskii, L. S. Tsemekhman, L. Tsymbulov, et al., Russ. J. Appl. Chem. 76, 1728 (2003).

    Article  CAS  Google Scholar 

  72. V. Witusiewicz, I. Arpshofen, H.-J. Seifert, et al., Thermochim. Acta 356, 39 (2000).

    Article  CAS  Google Scholar 

  73. K. Fitzner and O. Kleppa, Metall. Trans. A 24, 1827 (1993).

    Article  Google Scholar 

  74. W. Krieger, Berg-Hüttenm. Monatsh. 122, 485 (1977).

    CAS  Google Scholar 

  75. R. Berger, A. Kopp, and H. Philipson, A Feasibility to Electrify the Combustion Heated Walking Beam Furnace: Applying Induction and Resistance Heating (KTH Roy. Inst. Technol., Stockholm, Sweden, 2018).

    Google Scholar 

  76. J. J. Valencia and P. N. Quested, in ASM Handbook (ASM Int., Materials Park, OH, 2008), p. 468.

    Google Scholar 

  77. H. Kobatake, J. Schmitz, and J. Brillo, J. Mater. Sci. 49, 3541 (2014).

    Article  CAS  Google Scholar 

  78. Y. Kawai and Y. Shiraishi, Handbook of Physico-Chemical Properties at High Temperatures (Iron and Steel Inst. Japan, 1988).

    Google Scholar 

  79. L. Battezzati and A. Greer, Acta Metall. 37, 1791 (1989).

    Article  CAS  Google Scholar 

  80. A. Crawley, Int. Metall. Rev. 19, 32 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Arslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, A., Arslan, H. Estimation of Viscosity of Alloys Using Gibbs Free Energy of Mixing and Geometric Model. Russ. J. Phys. Chem. 95, 586–595 (2021). https://doi.org/10.1134/S003602442103002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442103002X

Keywords:

Navigation