Skip to main content
Log in

Determination of viscosity and surface tension of liquid Ni–Al–Ti system using the evaluated thermodynamic properties by AMCT

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermophysical properties of Ni–Al. Ni–Ti, and Al–Ti alloys, i.e., viscosity and surface tension, have been investigated using the evaluated thermodynamic properties, i.e., enthalpy of mixing \( \Delta H_{\text{mix}} \), Gibbs free energy of mixing \( \Delta G_{\text{mix}} \), and excess Gibbs free energy \( \Delta G_{{}}^{\text{E}} \), by the atom and molecular coexistence theory. Then, the third-degree Redlich–Kister (R–K) parameters for viscosity, surface tension, and excess Gibbs free energy at 1973 K were obtained. Based on this, the isothermal viscosity of Ni–Al–Ti ternary melts was simultaneously determined form the excess viscosity of the above-mentioned three binary systems by CALPHAD model and the similarity coefficients by Chou’s model, and the surface tension of the liquid ternary Ni–Al–Ti alloy systems was investigated with considering the excess surface tension of the three binary systems by Chou’s model as well as the excess Gibbs free energy of Ni–Al–Ti melts by Butler’s model for the multicomponent system at 1973 K. The results showed that the viscosity and surface tension of liquid Ni–Al–Ti alloy increase with the increase in Ti content at a fixed Al/Ni ratio, whereas decreases with increasing Al/Ni ratio at a given alloy composition at 1973 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Choudhury IA, El-Baradie MA (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77:278–284. https://doi.org/10.1016/s0924-0136(97)00429-9

    Article  Google Scholar 

  2. Loria EA (1992) Recent developments in the progress of superalloy 718. JOM-US 44:33–36. https://doi.org/10.1007/BF03222252

    Article  CAS  Google Scholar 

  3. Meetham GW (1991) High-temperature materials—a general review. J Mater Sci 26:853–860. https://doi.org/10.1007/BF00576759

    Article  CAS  Google Scholar 

  4. Njah N, Dimitrov O (1989) Microstructural evolution of nickel-rich Ni–Al–Ti alloys during aging treatments: the effect of composition. Acta Metall 37:2559–2566. https://doi.org/10.1016/0001-6160(89)90054-0

    Article  CAS  Google Scholar 

  5. Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys—recent developments. Adv Colloid Interface 159:198–212. https://doi.org/10.1016/j.cis.2010.06.009

    Article  CAS  Google Scholar 

  6. Battezzati L, Greer AL (1989) The viscosity of liquid metals and alloys. Acta Metall 37:1791–1802. https://doi.org/10.1016/0001-6160(89)90064-3

    Article  CAS  Google Scholar 

  7. Roach SJ, Henein H (2005) A new method to dynamically measure the surface tension, viscosity, and density of melts. Metall Mater Trans B 36:667–676. https://doi.org/10.1007/s11663-005-0057-5

    Article  Google Scholar 

  8. Brooks RF, Dinsdale AT, Quested PN (2005) The measurement of viscosity of alloys—a review of methods, data and models. Meas Sci Technol 16:354–362. https://doi.org/10.1088/0957-0233/16/2/005

    Article  CAS  Google Scholar 

  9. Shi R, Avey T, Luo AA (2019) A Calphad (CALculation of PHAse Diagrams)-based viscosity model for Al–Ni–Fe–Co melt system. J Mol Liq 291:111271. https://doi.org/10.1016/j.molliq.2019.111271

    Article  CAS  Google Scholar 

  10. Zhao X, Xu S, Liu J (2017) Surface tension of liquid metal: role, mechanism and application. Front Energy 11:535–567. https://doi.org/10.1007/s11708-017-0463-9

    Article  Google Scholar 

  11. Zhang F, Du Y, Liu S, Jie W (2015) Modeling of the viscosity in the AL–Cu–Mg–Si system: database construction. Calphad 49:79–86. https://doi.org/10.1016/j.calphad.2015.04.001

    Article  CAS  Google Scholar 

  12. Gallois B, Lupis CHP (1981) Effect of oxygen on the surface tension of liquid copper. Metall Trans B 12:549–557. https://doi.org/10.1007/BF02654326

    Article  Google Scholar 

  13. Brillo J, Wessing J, Kobatake H, Fukuyama H (2019) Surface tension of liquid Ti with adsorbed oxygen and its prediction. J Mol Liq 290:111226. https://doi.org/10.1016/j.molliq.2019.111226

    Article  CAS  Google Scholar 

  14. Ozawa S, Suzuki S, Hibiya T, Fukuyama H (2011) Influence of oxygen partial pressure on surface tension and its temperature coefficient of molten iron. J Appl Phys 109:14902. https://doi.org/10.1063/1.3527917

    Article  CAS  Google Scholar 

  15. Flint O (1965) Surface tension by pendant drop technique. J Nucl Mater 16:260–270. https://doi.org/10.1016/0022-3115(65)90115-7

    Article  CAS  Google Scholar 

  16. Quested P, Brooks R (2010) Measurement of thermophysical properties at high temperatures for liquid, semisolid, and solid commercial alloys. Met Process Simul ASM Int 22:33–45. https://doi.org/10.31399/asm.hb.v22b.a0005514

    Article  Google Scholar 

  17. Sarvar F, Whalley DC, Conway PP (2006) Thermal interface materials—a review of the State of the Art. In: 2006 1st electronic systemintegration technology conference, vol 2, pp 1292––1302. https://doi.org/10.1109/estc.2006.280178

  18. Hirai M (1993) Estimation of viscosities of liquid alloys. ISIJ Int 33:251–258. https://doi.org/10.2355/isijinternational.33.251

    Article  CAS  Google Scholar 

  19. Kozlov LY, Romanov LM, Petrov NN (1983) Predicting the viscosity of multicomponent metallic Melts. Izv Vuzov Chernaya Met 3:7–11

    Google Scholar 

  20. Seetharaman S, Sichen D (1994) Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall Mater Trans B 25:589–595. https://doi.org/10.1007/BF02650079

    Article  Google Scholar 

  21. Kaptay G (2003) A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data. In: Proceedings of MicroCAD 2003 conference section metallurgy (University of Miskolc), pp 23–28

  22. Shi R, Meier JM, Luo AA (2019) Controlling particle/metal interactions in metal matrix composites during solidification: the role of melt viscosity and cooling rate. Metall Mater Trans A 50:3736–3747. https://doi.org/10.1007/s11661-019-05307-9

    Article  CAS  Google Scholar 

  23. Kehr M, Schick M, Hoyer W, Egry I (2008) Viscosity of the binary system Al–Ni. High Temp-High Press 37:361–369

    CAS  Google Scholar 

  24. Wunderlich RK, Fecht H (2011) Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments. Int J Mater Res 102:1164–1173. https://doi.org/10.3139/146.110572

    Article  CAS  Google Scholar 

  25. Lad’Yanov VI, Bel’Tyukov AL, Menshikova SG, Korepanov AU (2014) Viscosity of Al–Ni and Al–Co melts in the Al-rich area. Phys Chem Liq 52:46–54. https://doi.org/10.1080/00319104.2013.793599

    Article  CAS  Google Scholar 

  26. Butler JAV, Kendall JP (1932) The thermodynamics of the surfaces of solutions. Proc R Soc Lond Ser A Contain Pap Math Phys Character 135:348–375. https://doi.org/10.1098/rspa.1932.0040

    Article  CAS  Google Scholar 

  27. Egry I, Brillo J, Holland-Moritz D, Plevachuk Y (2008) The surface tension of liquid aluminium-based alloys. Mater Sci Eng A 495:14–18. https://doi.org/10.1016/j.msea.2007.07.104

    Article  CAS  Google Scholar 

  28. Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Holland-Moritz D, Egry I (2010) Surface tension of γ-TiAl-based alloys. J Mater Sci 45:1993–2001

    Article  CAS  Google Scholar 

  29. Wessing JJ, Brillo J (2017) Density, molar volume, and surface tension of liquid Al–Ti. Metall Mater Trans A 48:868–882. https://doi.org/10.1007/s11661-016-3886-8

    Article  CAS  Google Scholar 

  30. Liu X, Lv X, Li C, Chen J, Bai C (2017) Surface tension of liquid Ti–Al alloys. Rare Metal Mat Eng 46:39–44. https://doi.org/10.1016/S1875-5372(17)30074-7

    Article  Google Scholar 

  31. Novakovic R, Ricci E (2008) Surface and transport properties of Ni–Ti liquid alloys. J Alloys Compd 452:167–173. https://doi.org/10.1016/j.jallcom.2007.01.176

    Article  CAS  Google Scholar 

  32. Kobatake H, Brillo J (2013) Density and viscosity of ternary Cr–Fe–Ni liquid alloys. J Mater Sci 48:6818–6824. https://doi.org/10.1007/s10853-013-7487-2

    Article  CAS  Google Scholar 

  33. Brillo J, Brooks R, Egry I, Quested P (2007) Viscosity measurement of liquid ternary Cu–Ni–Fe alloys by an oscillating cup viscometer and comparison with models. Int J Mater Res 98:457–462. https://doi.org/10.3139/146.101494

    Article  CAS  Google Scholar 

  34. Arslan H, Dogan A (2019) Determination of surface tension of liquid ternary Ni–Cu–Fe and sub-binary alloys. Philos Mag 99:1206–1224. https://doi.org/10.1080/14786435.2019.1576937

    Article  CAS  Google Scholar 

  35. Liu Y, Lv X, Bai C, Lai P, Wang J (2015) Viscosity evaluation of Fe–Ni–Co ternary alloy from the measured binary systems. J Ind Eng Chem 30:106–111. https://doi.org/10.1016/j.jiec.2015.05.009

    Article  CAS  Google Scholar 

  36. Xiao F, Liu L, Yang R, Zhao H, Fang L, Zhang C (2008) Surface tension of molten Ni-(Cr Co, W) alloys and segregation of elements. Trans Nonferr Met Soc 18:1184–1188. https://doi.org/10.1016/S1003-6326(08)60202-2

    Article  CAS  Google Scholar 

  37. Costa C, Delsante S, Borzone G, Zivkovic D, Novakovic R (2014) Thermodynamic and surface properties of liquid Co–Cr–Ni alloys. J Chem Thermodyn 69:73–84. https://doi.org/10.1016/j.jct.2013.09.034

    Article  CAS  Google Scholar 

  38. Yamasaki T, Yufune N, Ushio H, Okai D, Fukami T, Kimura HM, Inoue A (2004) Viscosity measurements for Fe–Ni–B and Fe–Ni–Al–B liquid alloys by an oscillating crucible method. Mater Sci Eng A 375–377:705–708. https://doi.org/10.1016/j.msea.2003.10.222

    Article  CAS  Google Scholar 

  39. Dubberstein T, Heller H, Fabrichnaya O, Aneziris CG, Volkova O (2016) Determination of viscosity for liquid Fe–Cr–Mn–Ni alloys. Steel Res Int 87:1024–1029. https://doi.org/10.1002/srin.201500470

    Article  CAS  Google Scholar 

  40. Liu YH (2006) Density and viscosity of molten Zn–Al alloys. Metall Mater Trans A 37:2767–2771. https://doi.org/10.1007/BF02586109

    Article  Google Scholar 

  41. Cheng J, Gröbner J, Hort N, Kainer KU, Schmid-Fetzer R (2014) Measurement and calculation of the viscosity of metals—a review of the current status and developing trends. Meas Sci Technol 25:62001. https://doi.org/10.1088/0957-0233/25/6/062001

    Article  CAS  Google Scholar 

  42. Gao S, Jiao K, Zhang J (2019) Review of viscosity prediction models of liquid pure metals and alloys. Philos Mag 99:853–868. https://doi.org/10.1080/14786435.2018.1562281

    Article  CAS  Google Scholar 

  43. Paradis PF, Ishikawa T, Yoda S (2002) Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int J Thermophys 23:825–842. https://doi.org/10.1023/A:1015459222027

    Article  CAS  Google Scholar 

  44. Kaptay G (2005) A unified equation for the viscosity of pure liquid metals. Zeitschrift für Metallkunde 96:24–31. https://doi.org/10.3139/146.018080

    Article  CAS  Google Scholar 

  45. Duan S, Shi X, Zhang M, Li B, Dou G, Guo H, Guo J (2019) Determination of the thermodynamic properties of Ni–Ti, Ni–Al, and Ti–Al, and nickel-rich Ni–Al–Ti melts based on the atom and molecule coexistence theory. J Mol Liq 294:111462. https://doi.org/10.1016/j.molliq.2019.111462

    Article  CAS  Google Scholar 

  46. Zhang J (2002) Applicability of the mass action law in combination with the coexistence theory of metallic melts involving compound to binary metallic melts. Acta Metall Sin (Engl Lett) 15:353–362

    CAS  Google Scholar 

  47. Zhang J (2007) Computational thermodynamics of metallurgical melts and solutions. Metallurgical Industry Press, Beijing

    Google Scholar 

  48. Zhang J, Wang P (2001) The widespread applicability of the mass action law to metallurgical melts and organic solutions. Calphad 25:343–354. https://doi.org/10.1016/S0364-5916(01)00054-2

    Article  CAS  Google Scholar 

  49. Yan L, Zheng S, Ding G, Xu G, Qiao Z (2007) Surface tension calculation of the Sn–Ga–In ternary alloy. Calphad 31:112–119. https://doi.org/10.1016/j.calphad.2006.09.005

    Article  CAS  Google Scholar 

  50. Tanaka T, Hack K, Iida T, Hara S (1996) Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Zeitschrift für Metallkunde 87:380–389

    CAS  Google Scholar 

  51. Huang W, Chang YA (1998) A thermodynamic analysis of the Ni–Al system. Intermetallics 6:487–498. https://doi.org/10.1016/S0966-9795(97)00099-X

    Article  CAS  Google Scholar 

  52. Liang H, Jin Z (1993) A reassessment of the Ti–Ni system. Calphad 17:415–426. https://doi.org/10.1016/0364-5916(93)90025-7

    Article  CAS  Google Scholar 

  53. Matsumoto S, Tokunaga T, Ohtani H, Hasebe M (2005) Thermodynamic analysis of the phase equilibria of the Nb–Ni–Ti system. Mater Trans 46:2920–2930

    Article  CAS  Google Scholar 

  54. Witusiewicz VT, Bondar AA, Hecht U, Velikanova TY (2009) The Al–B–Nb–Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J Alloys Compd 472:133–161. https://doi.org/10.1016/j.jallcom.2008.05.008

    Article  CAS  Google Scholar 

  55. Zhang F, Chen SL, Chang YA, Kattner UR (1997) A thermodynamic description of the Ti–Al system. Intermetallics 6:471–482. https://doi.org/10.1016/S0966-9795(97)00030-7

    Article  Google Scholar 

  56. Brillo J, Schumacher T, Kajikawa K (2019) Density of liquid Ni–Ti and a new optical method for its determination. Metall Mater Trans A 50:924–935. https://doi.org/10.1007/s11661-018-5047-8

    Article  CAS  Google Scholar 

  57. Fang L, Zhang SF, Xiao F, Yang RH, Mukai K (2010) Measurement and analysis of liquid density of Ni–Al binary alloys. J Alloys Compd 493:465–470. https://doi.org/10.1016/j.jallcom.2009.12.128

    Article  CAS  Google Scholar 

  58. Du Y, Clavaguera N (1996) Thermodynamic assessment of the Al–Ni system. J. Alloys Compd. 237:20–32. https://doi.org/10.1016/0925-8388(95)02085-3

    Article  CAS  Google Scholar 

  59. Okamoto H (1993) Al–Ti (Aluminum––Titanium). J Phase Equilib 14:120–121. https://doi.org/10.1007/BF02667890

    Article  Google Scholar 

  60. Chen W, Zhang L, Du Y, Huang B (2014) Viscosity and diffusivity in melts: from unary to multicomponent systems. Philos Mag 94:1552–1577. https://doi.org/10.1080/14786435.2014.890755

    Article  CAS  Google Scholar 

  61. Gąsior W (2014) Viscosity modeling of binary alloys: comparative studies. Calphad 44:119–128. https://doi.org/10.1016/j.calphad.2013.10.007

    Article  CAS  Google Scholar 

  62. Kubaschewski O (1958) The heats of formation in the system aluminium + nickel + titanium. Trans Faraday Soc 54:814–820. https://doi.org/10.1039/TF9585400814

    Article  CAS  Google Scholar 

  63. Golovataya NV, Roik OS, Kazimirov VP, Yakovenko OM, Sokolskii VE, Muratov OS (2018) The relationship between thermodynamic properties and local atomic structure of Al–TM (TM = Mn, Fe Co, Ni, Cu) melts. Phys Chem Liq 56:43–54. https://doi.org/10.1080/00319104.2017.1286341

    Article  CAS  Google Scholar 

  64. Pasturel A, Jakse N (2015) Short-range structural signature of transport properties of Al–Ni melts. J Non-Cryst Solids 425:176–182. https://doi.org/10.1016/j.jnoncrysol.2015.06.014

    Article  CAS  Google Scholar 

  65. Santhy K, Hari Kumar KC (2015) Thermodynamic reassessment of Nb–Ni–Ti system with order–disorder model. J Alloys Compd 619:733–747. https://doi.org/10.1016/j.jallcom.2014.08.200

    Article  CAS  Google Scholar 

  66. Lück R, Arpshofen I, Predel B, Smith JF (1988) Calorimetric determination of the enthalpies of formation of liquid Ni–Ti alloys. Thermochim Acta 131:171–181. https://doi.org/10.1016/0040-6031(88)80071-6

    Article  Google Scholar 

  67. Ternik P, Zadravec M, Rudolf R (2017) Numerical analysis of the NiTi solidification process influence of thermal conductivity. Sci Sinter 49:39–49. https://doi.org/10.2298/SOS1701039T

    Article  CAS  Google Scholar 

  68. Wessing J (2018) Thermophysical properties of liquid Al–Ti alloys under the influence of oxygen. PhD Dissertation. RWTH Aachen University

  69. Zhou K, Wang HP, Wei B (2012) Determining thermophysical properties of undercooled liquid Ti–Al alloy by electromagnetic levitation. Chem Phys Lett 521:52–54. https://doi.org/10.1016/j.cplett.2011.09.061

    Article  CAS  Google Scholar 

  70. Egry I (1993) On the relation between surface tension and viscosity for liquid metals. Scr Metall Mater 28:1273–1276. https://doi.org/10.1016/0956-716X(93)90467-7

    Article  CAS  Google Scholar 

  71. Chou K, Wei S (1997) A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries. Metall Mater Trans B 28:439–445. https://doi.org/10.1007/s11663-997-0110-7

    Article  Google Scholar 

  72. Singh RN, Sommer F (1998) Thermodynamic investigation of viscosity and diffusion in binary liquid alloys. Phys Chem Liq 36:17–28. https://doi.org/10.1080/00319109808035917

    Article  CAS  Google Scholar 

  73. Toop GW (1965) Predicting ternary activities using binary data. Trans TMS-AIME 223:850–855

    Google Scholar 

  74. Kohler F (1960) Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen. Monatsh Chem 91:738–740. https://doi.org/10.1007/BF00899814

    Article  CAS  Google Scholar 

  75. Muggianu YM, Gambino M, Bros JP (1975) Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723 k-choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. J Chim Phys Phys Chim Biol 72:83–88

    Article  CAS  Google Scholar 

  76. Dogan A, Arslan H (2015) Comparative thermodynamic prediction of integral properties of six component, quaternary, and ternary systems. Metall Mater Trans A 46:3753–3760. https://doi.org/10.1007/s11661-015-2888-2

    Article  CAS  Google Scholar 

  77. Egry I, Brillo J (2009) Surface Tension And Density Of Liquid Metallic Alloys Measured By Electromagnetic Levitation. J Chem Eng Data 54:2347–2352. https://doi.org/10.1021/je900119n

    Article  CAS  Google Scholar 

  78. Egry I (2005) The surface tension of binary alloys: simple models for complex phenomena. Int J Thermophys 26:931–939. https://doi.org/10.1007/s10765-005-6675-y

    Article  CAS  Google Scholar 

  79. Singh RN (1987) Short-range order and concentration fluctuations in binary molten alloys. Can J Phys 65:309–325. https://doi.org/10.1139/p87-038

    Article  CAS  Google Scholar 

  80. Bhatia AB, Singh RN (1982) Short range order and concentration fluctuations in regular and compound forming molten alloys. Phys Chem Liq 11:285–313. https://doi.org/10.1080/00319108208080752

    Article  Google Scholar 

  81. Qiao ZY, Xing X, Peng M, Mikula A (1996) Thermodynamic criterion for judging the symmetry of ternary systems and criterion applications. J Phase Equilib 17:502–507. https://doi.org/10.1007/BF02665997

    Article  CAS  Google Scholar 

  82. Tanaka T, Iida T (1994) Application of a thermodynamic database to the calculation of surface tension for iron-base liquid alloys. Steel Res 65:21–28. https://doi.org/10.1002/srin.199400921

    Article  CAS  Google Scholar 

  83. Ferreira IL, Garcia A (2019) The application of numerical and analytical approaches for the determination of thermophysical properties of Al–Si–Cu–Mg alloys. Contin Mech Thermodyn. https://doi.org/10.1007/s00161-019-00836-5

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. U1560203, 51704021, and 51274031), the Fundamental Research Funds for the Central Universities (FRF-TP-16-079A1), and the Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Chao Duan or Han-Jie Guo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, SC., Guo, HJ. Determination of viscosity and surface tension of liquid Ni–Al–Ti system using the evaluated thermodynamic properties by AMCT. J Mater Sci 55, 11071–11085 (2020). https://doi.org/10.1007/s10853-020-04841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04841-x

Navigation