Skip to main content
Log in

Reassessment of Ag–Pd System

  • XVI INTERNATIONAL CONFERENCE ON THERMAL ANALYSIS AND CALORIMETRY IN RUSSIA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

New CALPHAD assessment of experimental data on phase equilibria and thermodynamic properties of phases in the Ag–Pd binary is performed. The results provide good description of experimental data, excepting one thermodynamic dataset which had to be excluded from calculation due to incompatibility. Results of optimization provides good description of data of phase equilibria, enthalpy of formation and activities of components obtained from 1906 to 2020 in whole range of concentrations and at temperatures from 560 to 1700 K. Differing from the results of published assessment, no artifacts (spurious miscibility gaps) were detected. The value of excess entropy for the composition Ag69.7Pd30.3 obtained from the heat capacity measured from 5 to about 560 K was not included to optimization but was used as independent test of results; the agreement seems to be well within experimental errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Ed. by N. Saunders and A. P. Miodownik (Elsevier, Amsterdam, 1998).

    Google Scholar 

  2. I. Karakaya and W. T. Thompson, Bull. Alloys Phase Diagr. 9, 237 (1988)

    Article  Google Scholar 

  3. G. Ghosh, C. Kantner, and G. B. Olson, J. Phase Equilib. 20, 295 (1999).

    Article  CAS  Google Scholar 

  4. C. Luef, A. Paul, H. Flandorfer, A. Kodentsov, and H. Ipser, J. Alloys Compd. 391, 67 (2005).

    Article  CAS  Google Scholar 

  5. J. Sopousek, A. Zemanova, J. Vrestal, and P. Broz, J. Alloys Compd. 504, 431 (2010).

    Article  CAS  Google Scholar 

  6. A. Benisek and E. Dachs, J. Alloys Compd. 527, 127 (2012).

    Article  CAS  Google Scholar 

  7. D. Feng and P. Taskinen, J. Mater. Sci. 49, 5790 (2014).

    Article  CAS  Google Scholar 

  8. E. M. Savitskii and N. L. Pravoverov, Russ. J. Inorg. Chem. 6, 253 (1961).

    Google Scholar 

  9. E. M. Savitskii and N. L. Pravoverov, Russ. J. Inorg. Chem. 6, 1402 (1961).

    Google Scholar 

  10. S. Hayat, A. B. Ziya, N. Ahmad, and F. Bashir, Phys. Solid State 62, 54 (2020). https://doi.org/10.1134/S1063783420010126

    Article  CAS  Google Scholar 

  11. R. Ruer, Z. Anorg. Allg. Chem. 51, 315 (1906).

    Article  CAS  Google Scholar 

  12. N. A. Vatolin, A. I. Timofeyev, and E. L. Dubinin, Tr. Inst. Met. Fiz. Ural Nauch. Tsentr AN SSSR 28, 236 (1971).

    Google Scholar 

  13. R. Oriani and W. K. Murphy, Acta Metall. 10, 879 (1962).

    Article  CAS  Google Scholar 

  14. J. P. Chan and R. Hultgren, J. Chem. Thermodyn. 1, 45 (1969).

    Article  CAS  Google Scholar 

  15. K. M. Myles, Acta Metall. 13, 109 (1965).

    Article  CAS  Google Scholar 

  16. V. N. Eremenko, G. M. Lukashenko, and V. L. Pritula, Russ. J. Phys. Chem. 42, 346 (1968).

    Google Scholar 

  17. J. N. Pratt, Trans. Faraday Soc. 56, 975 (1960).

    Article  CAS  Google Scholar 

  18. N. G. Schmahl, Z. Anorg. Allg. Chem. 262, 1 (1951).

    Article  Google Scholar 

  19. N. G. Schmahl and W. Schneider, Z. Phys. Chem. 57, 218 (1968). https://doi.org/10.1524/zpch.1968.57.3_6.218

    Article  CAS  Google Scholar 

  20. Thermo-Calc Software. http://www.thermo-calc.com. Accessed April 9, 2020.

  21. F. Tang and B. Hallstedt, CALPHAD 55, 260 (2016).

    Article  CAS  Google Scholar 

  22. A. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  23. J. W. Arblaster, J. Phase Equilib. Diffus. 36, 573 (2015). https://doi.org/10.1007/s11669-015-0411-5

    Article  CAS  Google Scholar 

  24. J. W. Arblaster, Johnson Matthey Technol. Rev. 62, 48 (2018). https://doi.org/10.1595/205651318X696648

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors wish to thank Dr. A. Benisek (Universität Salzburg, Austria) for providing us with primary data of heat capacity of Ag–Pd alloy obtained in [6].

Funding

The reported study was partially funded by RFBR, project no. 19-33-90204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pavlenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.S., Kabanova, E.G. & Kuznetsov, V.N. Reassessment of Ag–Pd System. Russ. J. Phys. Chem. 94, 2691–2695 (2020). https://doi.org/10.1134/S0036024420130178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130178

Keywords:

Navigation