Skip to main content
Log in

Thermodynamic Modeling of the Ag-X (X = B, Fe, Sm, Pu) Binary Systems

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Based on the experimental data available in the literature, the Ag-X (X = B, Fe, Sm, Pu) binary systems were assessed by means of the CALPHAD (CALculation of PHAse Diagrams) approach. Six intermetallic compounds, i.e. αAg2Sm, βAg2Sm, AgSm, Ag51Sm14, Ag51Pu14 and Ag2Pu, were treated as stoichiometric phases. The solution phases including liquid, (Ag, γFe, δPu), (βB), (αFe, δFe, εPu), (αSm, γSm), (βSm), (αPu), (βPu), (γPu) and (δ’Pu) were described by the substitutional solution model with the Redlich–Kister polynomial. A set of self-consistent thermodynamic parameters for each of the binary systems was obtained. The calculated phase diagrams and thermodynamic properties were in agreement with the reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Findik and H. Uzun, Microstructure, Hardness and Electrical Properties of Silver-Based Refractory Contact Materials, Mater. Des., 2003, 24(7), p 489-492

    Article  Google Scholar 

  2. F. Mao, M. Taher, O. Kryshtal, A. Kruk, A. Czyrska-Filemonowicz, M. Ottosson, A.M. Andersson, U. Wiklund, and U. Jansson, Combinatorial Study of Gradient Ag-Al Thin Films: Micro Structure, Phase Formation, Mechanical and Electrical Properties, ACS Appl. Mater. Interfaces, 2016, 8(44), p 30635-30643

    Article  Google Scholar 

  3. M. Aspiala, F. Tesfaye, and P. Taskinen, Thermodynamic Study in the Ag-Sb-S System by the EMF Method, J. Chem. Thermodyn., 2016, 98, p 361-366

    Article  Google Scholar 

  4. D.H. Xiao, J.N. Wang, D.Y. Ding, and H.L. Yang, Effect of Rare Earth Ce Addition on the Microstructure and Mechanical Properties of an Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2003, 352(1–2), p 84-88

    Article  Google Scholar 

  5. W. Głuchowski and Z. Rdzawski, Thermal Stability of Properties in Silver-Rare Earth Metals Alloys, Achiev. Mater. Manuf. Eng., 2008, 28(2), p 143-150

    Google Scholar 

  6. C.Y. Shi, Y. Du, B. Hu, B.B. Yang, Y.F. Pan, F.Y. Guo, S.H. Liu, and Q. Du, Thermodynamic Descriptions of the Ag-X (X = S, As, Lu) Systems, Calphad, 2018, 62, p 207-214

    Article  Google Scholar 

  7. V.A. Mukhanov, O.O. Kurakevych, and V.L. Solozhenko, Thermodynamic Model of Hardness: Particular Case of Boron-Rich Solids, J. Superhard Mater., 2010, 32(3), p 167-176

    Article  Google Scholar 

  8. M. Merklein, M. Wieland, M. Lechner, S. Bruschib, and A. Ghiottib, Hot Stamping of Boron Steel Sheets with Tailored Properties: A Review, J. Mater. Process. Technol., 2016, 228, p 11-24

    Article  Google Scholar 

  9. P. Chui, Effect of Boron Content on Microstructure and Mechanical Properties of Ti50Zr50 Alloys, Vacuum, 2018, 154, p 25-31

    Article  ADS  Google Scholar 

  10. T. Huang, J. Cheng, D. Bian, and Y. Zheng, Fe-Au and Fe-Ag Composites as Candidates for Biodegradable Stent Materials, J. Biomed. Mater. Res. B, 2016, 104, p 225-240

    Article  Google Scholar 

  11. R. Akbarzadeh, M. Ghaedi, S. Nasiri Kokhdan, R. Jannesar, F. Sadeghfar, F. Sadri, and L.L. Tayebi, Electrochemical Hydrogen Storage, Photocatalytical and Antibacterial Activity of FeAg Bimetallic Nanoparticles Supported on TiO2 Nanowires, Int. J. Hydrogen Energy, 2018, 43(39), p 18316-18329

    Article  Google Scholar 

  12. P. Sánchez-López, Y. Kotolevich, S. Miridonov, F. Chávez-Rivas, S. Fuentes, and V. Petranovskii, Bimetallic AgFe Systems on Mordenite: Effect of Cation Deposition Order in the NO Reduction with C3H6/CO, Catalysts, 2019, 9(1), p 58

    Article  Google Scholar 

  13. V.S. Sudavtsova, M.A. Shevchenko, V.V. Berezutskii, M.I. Ivanov, and V.G. Kudin, Thermo-Dynamic Properties of Melts of the Binary Ag (Au)-Sm Systems, Russ. J. Phys. Chem. A, 2014, 88(2), p 200-206

    Article  Google Scholar 

  14. C. Lloyd and B. Goddard, Proliferation Resistant Plutonium: An Updated Analysis, Nucl. Eng. Des., 2018, 330, p 297-302

    Article  Google Scholar 

  15. A.C. Lawson, Thermodynamics of the Bulk Modulus of Delta Phase Plutonium Alloys, Philos. Mag., 2019, 99(12), p 1481-1498

    Article  ADS  Google Scholar 

  16. F.C. Yin, M.H. Huang, X.P. Su, P. Zhang, Z. Li, and Y. Shi, Thermodynamic Assessment of the Ag-Ce (Silver–Cerium) System, J. Alloys Compd., 2002, 334(1–2), p 154-158

    Article  Google Scholar 

  17. Z.H. Long, Y.J. Yang, S. Jin, H.S. Liu, F. Zhang, and Z.P. Jin, Thermodynamic Assessments of Ag–Dy and Ag–Er Binary Systems, J. Alloys Compd., 2010, 489(1), p 146-151

    Article  Google Scholar 

  18. F. Wald, Stability of the Red Alpha-Rhombohedral B Modification, Electron Technol., 1970, 3(1), p 103-108

    Google Scholar 

  19. W. Obrowski, The Structure of the Diboride of Silver and Gold, Naturwissenschaften, 1961, 48(11), p 428

    Article  ADS  Google Scholar 

  20. F. Wald and R.W. Stormont, Investigations on the Constitution of Certain Binary boron-Metal Systems, J. Less-Common Met., 1965, 9(6), p 423-433

    Article  Google Scholar 

  21. H. Giebelhausen, Behavior of Vanadium with Silicon, Nickel, Copper, and Silver of Boron with Nickel, Z. Anorg. Chem., 1915, 91, p 261-262, in German

    Article  Google Scholar 

  22. I. Karakaya and W.T. Thompson, The Ag-B (Silver-Boron) System, J. Phase Equilib., 1990, 11(6), p 547

    Google Scholar 

  23. B. Callmer, An Accurate Refinement of the β-Rhombohedral Boron Structure, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1977, 33(6), p 1951-1954

    Article  Google Scholar 

  24. H.W. King, Crystal Structures of the Elements at 25 °C, J. Phase Equilib., 1981, 2(3), p 401-402

    Google Scholar 

  25. G.J. Petrenko, On Alloys of Silver with Metals of the Iron Group, Z. Anorg. Chem., 1907, 53, p 212-215, in German

    Article  Google Scholar 

  26. W.S. Gibson and W. Hume-Rothery, The Constitution of Alloys of Iron with Ruthenium, Rhodium, Palladium and Silver, J. Iron Steel Inst., 1958, 189, p 243-250

    Google Scholar 

  27. J. Chipman and T.P. Floridis, Activity of Aluminum in Liquid Ag-Al, Fe-Al, Fe-Al-C, and Fe-Al-C-Si Alloys, Acta Metall., 1955, 3(5), p 456-459

    Article  Google Scholar 

  28. G. Tammann and W. Oelsen, The Solubility of Iron in Lead, Silver, Bismuth, and Cadmium, Z. Anorg. Chem., 1930, 186, p 277-279, in German

    Google Scholar 

  29. J. Bernardini, A. Combe-Brun, and J. Cabane, Solubility and Diffusion of Iron in Silver Monocrystals, CR Hebd. Séances Acad. Sci., 1969, 269, p 287-289, in French

    Google Scholar 

  30. H.A. Wriedt, W.B. Morrison, and W.E. Cole, The Solubility of Silver in γ-Fe, Metall. Trans., 1973, 4(6), p 1453-1456

    Google Scholar 

  31. L.J. Swartzendruber, The Ag-Fe (Silver-Iron) System, J. Phase Equilib., 1984, 5(6), p 560-564

    Google Scholar 

  32. B. Sundman, A Computer Program for Optimizing Parameters in Thermodynamic Models, Royal Institute of Technology, Stockholm, 1981

    Google Scholar 

  33. A.T. Dinsdale, SGTE Data for Pure Substances, Calphad, 1991, 15(4), p 317-425

    Article  Google Scholar 

  34. J.L. Murray, Sss, Binary Alloy Phase Diagrams, Vol 1, 2nd ed., T.B. Massalski, Ed., American Society for Metals, Metals Park, 1986,

    Google Scholar 

  35. E. Gebhardt, M.V. Erdberg, and U. Luty, The Systems Silver-Yttrium and Silver-Samarium, Nucl. Met., 1964, 10, p 303-314

    Google Scholar 

  36. S. Steeb and D. Godel, On the Structure of the Phases AgSm and Ag3Sm, Z. Metallkd., 1965, 56, p 612, in German

    Google Scholar 

  37. S. Steeb, D. Godel, and C. Löhr, On the Structure of the Compounds Ag3RE (RE = Y, La, Ce, Sm, Gd, Dy, Ho, Er), J. Less-Common Met., 1968, 15(2), p 137-141

    Article  Google Scholar 

  38. O.D. McMasters, K.A. Gschneider, and R.F. Venteicher, Crystallography of the Silver-Rich Rare Earth-Silver Intermetallic Compounds, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1970, 26(9), p 1224-1229

    Article  Google Scholar 

  39. K.A. Gschneidner, O.D. McMasters, D.G. Alexander, and R.F. Venteicher, Factors Influencing the Formation of Silver-Rich Solid Solutions in Rare Earth-Silver Alloy Systems, Metall. Trans., 1970, 1(7), p 1961-1971

    Article  Google Scholar 

  40. I. Stapf, G. Kiessler, H. Jehn, E. Gebhardt, and A. Mulokozi, On the Structure of the System Silver-Samarium, J. Less-Common Met., 1980, 71(2), p 19-27, in German

    Article  Google Scholar 

  41. K.A. Gschneidner and F.W. Calderwood, The Ag-Sm (Silver-Samarium) System, J. Phase Equilib., 1985, 6(2), p 142-143

    Google Scholar 

  42. A.K. Niessen, F.R. De Boer, R. Boom, P.F. de Chatel, W.C.M. Mattens, and A.R. Miedema, Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II, Calphad, 1983, 7(1), p 51-70

    Article  Google Scholar 

  43. M.I. Ivanov and V.T. Witusiewicz, Thermochemistry of Binary Liquid Alloys of Silver with Rare Earth Metals, J. Alloys Compd., 1992, 186(2), p 255-266

    Article  Google Scholar 

  44. S.V. Meschel and O.J. Kleppa, Thermochemistry of Some Binary Alloys of Samarium with the Noble Metals (Cu, Ag, Au) by High Temperature Direct Synthesis Calorimetry, J. Alloys Compd., 2006, 416(1–2), p 93-97

    Article  Google Scholar 

  45. The Open Quantum Materials Database. http://oqmd.org/

  46. D.H. Wood, E.M. Cramer, P.L. Wallace, Investigation of the plutonium-silver system. Office of Scientific & Technical Information Technical Reports, University of California Press, California, 1970

  47. F.W. Schonfeld, The metal plutonium, University of Chicago Press, Chicago, 1961

    Google Scholar 

  48. O.J.C. Runnalls, The Crystal Structures of Some Intermetallic Compounds of Plutonium, Can. J. Chem., 1956, 34(2), p 133-145

    Article  Google Scholar 

  49. W.H. Zachariasen and F.H. Ellinger, Crystal Chemical Studies of the 5f-Series of Elements. XXIV. The Crystal Structure and Thermal Expansion of γ-Plutonium, Acta Crystallogr., 1955, 8(7), p 431-433

    Article  Google Scholar 

  50. F.H. Ellinger, Crystal Structure of Delta-Prime Plutonium and the Thermal Expansion Characteristics of Delta, Delta-Prime, and Epsilon Plutonium, JOM, 1956, 8(10), p 1256-1259

    Article  ADS  Google Scholar 

  51. W.H. Zachariasen and F.H. Ellinger, The Crystal Structure of Alpha Plutonium Metal, Acta Crystallogr., 1963, 16(8), p 777-783

    Article  Google Scholar 

  52. W.H. Zachariasen and F.H. Ellinger, The Crystal Structure of Beta Plutonium Meta, Acta Crystallogr., 1963, 16(5), p 369-375

    Article  Google Scholar 

  53. H.A. Wriedt, The O-Pu (Oxygen-Plutonium) System, Bull. Alloys Phase Diagr., 1990, 11(2), p 184-202

    Article  Google Scholar 

  54. O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classify Cation of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345-348

    Article  Google Scholar 

  55. Y. Du, R. Schmid-Fetzer, and H. Ohtani, Thermodynamic Assessment of the V-N System, Z. Metallkd., 1997, 88(7), p 545-556

    Google Scholar 

  56. H. Okamoto and T.B. Massalski, Thermodynamically Improbable Phase Diagrams, J. Phase Equilib., 1991, 12(2), p 148-168

    Article  Google Scholar 

  57. H. Okamoto and T.B. Massalski, Guidelines for Binary Phase Diagram Assessment, J. Phase Equilib., 1993, 14(3), p 316-335

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Natural Science Research Projects of Colleges and Universities in Anhui Province (Grant No. KJ2019A0113), China Postdoctoral Science Foundation (No. 2015M581972), Anhui Province Postdoctoral Science Foundation (No. 2017B210) and the Graduate Innovation Foundation of Anhui University of Science and Technology (No. 2019CX2055) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Hu, B., Jiang, Y. et al. Thermodynamic Modeling of the Ag-X (X = B, Fe, Sm, Pu) Binary Systems. J. Phase Equilib. Diffus. 41, 257–268 (2020). https://doi.org/10.1007/s11669-020-00813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00813-5

Keywords

Navigation