Skip to main content
Log in

Stationary Phases Based on PIM-1 Polymer of Intrinsic Microporosity for Gas Chromatography

  • PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Polyimide PIM-1, which forms a porous polymer layer on the walls of a capillary column, exhibits high thermal stability. It is studied as a stationary phase for gas chromatography. A column with the PIM-1 stationary phase displays a drastic difference in efficiency, depending on the molecular size of the analyte: 2500–3000 theoretical plates per meter for methane and ethane and fewer than 1000 plates for larger molecules. This behavior of the column is attributed to the poor accessibility of sorption sites, as is apparent from the high loss of entropy during the sorption of light hydrocarbons and the low diffusion coefficients for these sorbates. The effect the physical aging of PIM-1 has on the separating properties of a column is studied in the accelerated thermal aging mode using the example of separation of a model C1–C4 hydrocarbon mixture. It is shown that upon heating the stationary phase to 200°C, sorbate retention and column efficiency fall monotonously. When the temperature is raised to 300°C, an unexpected increase in the analyte retention is observed, though the column’s efficiency continues to fall with respect to all sorbates except isobutane, for which this parameter increases. The causes of these unexpected effects have yet to be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Davankov and M. P. Tsyurupa, Hypercrosslinked Polymeric Networks and Adsorbing Materials, Synthesis, Structure, Properties, and Application (Elsevier, Amsterdam, 2010).

    Google Scholar 

  2. L. D. Belyakova, O. B. Vasilevskaya, M. P. Tsyurupa, and V. A. Davankov, Zh. Fiz. Khim. 69, 696 (1995).

    CAS  Google Scholar 

  3. L. D. Belyakova, O. V. Vasilevskaya, M. P. Tsyurupa, and V. A. Davankov, Russ. J. Phys. Chem. A 70, 1374 (1996).

    Google Scholar 

  4. Yu. Yampolskii, L. Starannikova, N. Belov, et al., J. Membr. Sci. 453, 532 (2014).

    Article  CAS  Google Scholar 

  5. V. Belotserkovskaya and E. Yakovleva, J. Chromatogr., A 1298, 109 (2013).

  6. Y. V. Patrushev, E. Y. Yakovleva, I. K. Shundrina, et al., J. Chromatogr., A 1406, 291 (2015).

    Article  CAS  Google Scholar 

  7. V. E. Shiryaeva, T. P. Popova, A. A. Korolev, et al., J. Sep. Sci. (in press).

  8. P. M. Budd, E. S. Elabas, B. S. Ghanem, et al., Adv. Mater. 16, 456 (2004).

    Article  CAS  Google Scholar 

  9. E. Yakubenko, A. Korolev, P. Chapala, et al., Anal. Chim. Acta 986, 153 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. L. S. Ettre and J. V. Hinshaw, Basic Relationships of Gas Chromatography (Advanstar, Cleveland, 1993).

    Google Scholar 

  11. J. Weber, N. Du, and M. D. Guiver, Macromolecules 44, 1763 (2011).

    Article  CAS  Google Scholar 

  12. V. E. Shiryaeva, A. A. Korolev, T. P. Popova, A. Yu. Kanat’eva, and A. A. Kurganov, Russ. Chem. Bull. 67, 1307 (2018).

    Article  CAS  Google Scholar 

  13. P. Bernardo, F. Bazzarelli, F. Tasselli, et al., Polymer 113, 283 (2017).

    Article  CAS  Google Scholar 

  14. Y. Yampolskii and N. Belov, Macromolecules 48, 6751 (2015).

    Article  CAS  Google Scholar 

  15. A. Korolev, V. Shyrjaeva, T. Popova, and A. Kurganov, J. Chromatogr., A 1218, 3267 (2011).

Download references

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kurganov.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, V.E., Popova, T.P., Kant’eva, A. et al. Stationary Phases Based on PIM-1 Polymer of Intrinsic Microporosity for Gas Chromatography. Russ. J. Phys. Chem. 93, 946–950 (2019). https://doi.org/10.1134/S0036024419050261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419050261

Keywords:

Navigation