Skip to main content
Log in

Gas Chromatographic Study of the Thermal Stability of Poly[1-(trimethylsilyl)-1-propyne] and a Stationary Phase Based on It

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermal stability of poly[1-(trimethylsilyl)-1-propyne] is studied by heating a capillary column containing the polymer as a stationary phase and systematically separating a test mixture of light hydrocarbons on the column. It is shown that heating the column to 130°C does not change the column efficiency or the retention time of the sorbates. A further increase in temperature lowers both the column efficiency and the retention time of the sorbates. However, the sorbates’ retention by the polymer weakens symbatically for all of the studied hydrocarbons, while a drop in the column efficiency for methane and ethane is barely observed prior to the chemical decomposition of the polymer and is fairly pronounced for C3–C4 hydrocarbons. A particularly large drop in efficiency is observed for isobutane, for which the dependence of column efficiency on the heating temperature exhibits two-step behavior. The diffusion coefficients of the sorbates in the polymer phase are calculated; it is shown that they fall abruptly upon heating the column. However, the drop in the diffusion coefficients for methane and ethane upon heating the column does not correlate with the continued efficiency of the column for these sorbates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).

    Article  CAS  Google Scholar 

  2. T. Masuda, E. Isobe, and T. Higashimura, Macromolecules 18, 841 (1985).

    Article  CAS  Google Scholar 

  3. T. Masuda, E. Isobe, T. Higashimura, and K. Takada, J. Am. Chem. Soc. 105, 7473 (1983).

    Article  CAS  Google Scholar 

  4. T. Nakagawa, T. Saito, S. Asakawa, and Y. Saito, Gas Sep. Purif. 2, 3 (1988).

    Article  CAS  Google Scholar 

  5. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, J. Membr. Sci. 191, 85 (2001).

    Article  CAS  Google Scholar 

  6. J. R. Fried and D. K. Goyal, J. Polym. Sci., B 36, 519 (1998).

    Article  CAS  Google Scholar 

  7. K. D. Dorkenoo and P. H. Pfromm, Macromolecules 33, 3747 (2000).

    Article  CAS  Google Scholar 

  8. M. Langsam and L. M. Robeson, Polym. Eng. Sci. 29, 44 (1989).

    Article  CAS  Google Scholar 

  9. K. Nagai, B. D. Freeman, and A. J. Hill, J. Polym. Sci., B 38, 1222 (2000).

    Article  CAS  Google Scholar 

  10. K. Nagai and T. Nakagama, J. Membr. Sci. 94, 261 (1994).

    Google Scholar 

  11. T. Nakagava, S. Fujisaki, H. Nakano, and A. Higuchi, J. Membr. Sci. 94, 183 (1994).

    Article  Google Scholar 

  12. I. Pinnau, C. G. Casillas, A. Morisato, and B. D. Freeman, J. Polym. Sci., B 35, 1483 (1997).

    Article  CAS  Google Scholar 

  13. Y. P. Yampol’skii, S. M. Shishatskii, V. P. Shantorovich, et al., Appl. Polym. Sci. 48, 1935 (1993).

    Article  Google Scholar 

  14. S. D. Kelman, B. W. Rowe, C. W. Bielawski, et al., J. Membr. Sci. 320, 123 (2008).

    Article  CAS  Google Scholar 

  15. V. G. Berezkin, A. A. Korolev, and V. S. Khotimskii, Dokl. Phys. Chem. 370, 1 (2000).

    Google Scholar 

  16. O. A. Nikolaeva, Y. V. Patrushev, and V. N. Sidelnikov, J. Chromatogr., A 1488, 126 (2017).

  17. E. Yakubenko, A. Korolev, P. Chapala, et al., Anal. Chim. Acta 986, 153 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. V. R. Alishoev and V. G. Berezkin, Russ. Chem. Rev. 36, 545 (1967).

    Article  Google Scholar 

  19. V. Yu. Belotserkovskaya, Dissertation (Novosibirsk, 2011).

  20. N. Morlière, C. Vallieres, L. Perrin, and D. Roizard, J. Membr. Sci. 270, 123 (2006).

    Article  CAS  Google Scholar 

  21. S. D. Kelman, PhD Thesis (Univ. Texas, Austin, 2008).

  22. L. S. Ettre and J. V. Hinshaw, Basic Relationships of Gas Chromatography (Advanstar, Cleveland, 1993).

    Google Scholar 

  23. V. G. Berezkin, A. A. Korolev, I. V. Malyukova, et al., J. Chromatogr., A 960, 151 (2002).

    Article  CAS  Google Scholar 

  24. Built-In Functions in OriginPro 2016 (OriginLab LLC, Northhamption, USA, 2016).

  25. T. Masuda, B-Z. Tang, and T. Higashimura, Macromolecules 18, 2369 (1985).

    Article  CAS  Google Scholar 

  26. V. L. Khodzhaeva, V. G. Zaikin, and V. S. Khotimskii, Russ. Chem. Bull. 52, 1333 (2003).

    Article  CAS  Google Scholar 

  27. A. Korolev, V. Shyrjaeva, T. Popova, and A. Kurganov, J. Chromatogr., A 1218, 3267 (2011).

Download references

ACKNOWLEDGMENTS

This work was performed as part of State Task no. 79 for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, from the Federal Agency for Scientific Organizations of Russia, state registration no. AAAA-A18-118011990148-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kurganov.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, V.E., Popova, T.P., Korolev, A.A. et al. Gas Chromatographic Study of the Thermal Stability of Poly[1-(trimethylsilyl)-1-propyne] and a Stationary Phase Based on It. Russ. J. Phys. Chem. 93, 151–156 (2019). https://doi.org/10.1134/S003602441812035X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441812035X

Keywords:

Navigation