Skip to main content
Log in

Solubilities, Densities, and Refractive Indices of the Quaternary System (NaCl + NaBO2 + KCl + KBO2 + H2O) at 288.15 K

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Solid-liquid phase equilibria of the quaternary system (NaCl + NaBO2 + KCl + KBO2 + H2O) is very important for the separation of potassium and boron salts from the salt lake brines. In this paper, the solubilities, densities and refractive indices of the quaternary system (NaCl + NaBO2 + KCl + KBO2 + H2O) at 288.15 K were determined by the isothermal solution equilibrium method. The experimental results show that the (NaCl + NaBO2 + KCl + KBO2 + H2O) system contains three invariant points, seven univariate solubility curves, and five salt crystallization regions corresponding to halite (NaCl), sodium metaborate tetrahydrate (NaBO2·4H2O), hydrated potassium metaborate (KBO2·4/3H2O), sylvite (KCl), and the double salt teepleite (NaCl·NaBO2·2H2O, Te) existed in this system. KCl occupies the greatest part of phase region, while KBO2·4/3H2O covers the smallest. These results show that KCl could be easily crystallized and separated from this system. The physicochemical properties (refractive index and density) presents a regular variation with the increasing of Jänecke index values of \(J({\text{BO}}_{2}^{ - })\) in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Ciceri, D. A. C. Manning, and A. Allanore, Sci. Total Environ. 502, 590 (2015). https://doi.org/10.1016/j.scitotenv.2014.09.013

    Article  CAS  Google Scholar 

  2. R. Liu, X. X. Xue, X. Liu, et al., Bull. Chin. Ceram. Soc. 25, 107 (2006). https://doi.org/10.3969/j.issn.1001-1625.2006.06.025

    Article  Google Scholar 

  3. L. R. Hu and S. J. Wang, Technol. Chem. Ind. Miner. 35, 1 (2006).

    CAS  Google Scholar 

  4. H. W. Ge, M. Wang, Y. Yao, et al., J. Chem. Eng. Data 65, 26 (2019). https://doi.org/10.1021/acs.jced.9b00663

    Article  CAS  Google Scholar 

  5. V. Dolnik, Electrophoresis 41, 1073 (2020). https://doi.org/10.1002/elps.201900470

    Article  CAS  Google Scholar 

  6. H. I. Schlesinger, H. C. Brown, A. E. Finholt, et al., J. Am. Chem. Soc. 75, 215 (1953). https://doi.org/10.1021/ja01097a057

    Article  CAS  Google Scholar 

  7. J. Goubeau, H. Kallfass, Z. Anorg. Allg. Chem. 299, 160 (1959). https://doi.org/10.1002/zaac.19592990308

    Article  CAS  Google Scholar 

  8. Y. Kojima, Y. Kawai, and H. Nakanishi, J. Power Sources 135, 36 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.079

    Article  CAS  Google Scholar 

  9. R. Biniwale, S. Rayalu, S. Devotta, et al., Int. J. Hydrogen Energy 33, 360 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.028

    Article  CAS  Google Scholar 

  10. E. Y. Marrero-Alfonso, A. M. Beaird, T. A. Davis, et al., Ind. Eng. Chem. Res. 48, 3703 (2009). https://doi.org/10.1021/ie8016225

    Article  CAS  Google Scholar 

  11. L. Z. Ouyang, H. Zhong, and Z. M. Li, J. Power Sources 269, 768 (2014). https://doi.org/10.1016/j.jphotochem.2006.12.028

  12. Z. Y. Li, X. Huang, S. Xu, et al., J. Photoch, and Photobio. A: Chem. 188, 311 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.074

    Article  CAS  Google Scholar 

  13. B. H. Liu, Z. P. Li, N. Morigasaki, et al., Int. J. Hydrogen Energy 33, 1323 (2008). https://doi.org/10.1016/j.ijhydene.2007.12.033

    Article  CAS  Google Scholar 

  14. X. C. Liu, Y. Y. Zhou, J. C. Zhang, et al., ACS Appl. Mater. Interface 9, 20255 (2017). https://doi.org/10.1021/acsami.7b02563

    Article  CAS  Google Scholar 

  15. S. A. Mazunin, M. N. Noskov, and A. V. Elsukov, Russ. J. Inorg. Chem. 62, 539 (2017). https://doi.org/10.1134/S0036023617050163

    Article  CAS  Google Scholar 

  16. S. Q. Wang, D. Zhao, Y. Song, et al., Russ. J. Inorg. Chem. 64, 661 (2019). https://doi.org/10.1134/S003602361905019X

    Article  CAS  Google Scholar 

  17. C. C. Shi, J. Yang, S. Q. Wang, et al., Chin. J. Salt Lake Res. 27, 78 (2019).

    CAS  Google Scholar 

  18. S. Q. Wang, X. M. Du, Y. Jing, et al., J. Chem. Eng. Data 62, 253 (2017). https://doi.org/10.1021/acs.jced.6b00626

    Article  CAS  Google Scholar 

  19. H. W. Ge, H. Yang, and M. Wang, J. Chem. Eng. Data 65, 628 (2020). https://doi.org/10.1021/acs.jced.9b00852

    Article  CAS  Google Scholar 

  20. X. P. Zhao, X. P. Zhang, and S. H. Sang, Russ. J. Phys. Chem. A 91, 1932 (2017). https://doi.org/10.1134/s0036024417100417

    Article  CAS  Google Scholar 

  21. D. C. Li, J. S. Yuan, and S. Q. Wang, Russ. J. Phys. Chem. A 88, 42 (2014). https://doi.org/10.1134/S0036024414010300

    Article  CAS  Google Scholar 

  22. T. L. Deng, S. Q. Wang, and B. Sun, J. Chem. Eng. Data 53, 411(2008). https://doi.org/10.1021/je700472p

    Article  CAS  Google Scholar 

  23. L. Yang, X. F. He, Y. Y. Gao, et al., J. Chem. Eng. Data 63, 1206 (2018). https://doi.org/10.1021/acs.jced.7b00800

    Article  CAS  Google Scholar 

  24. S. Q. Wang, X. M. Du, Y. Jing, et al., Russ. J. Phys. Chem. A 91, 2503 (2017). https://doi.org/10.1021/acs.jced.6b00626

    Article  CAS  Google Scholar 

  25. S. Q. Wang, Y. Song, X. M. Du, et al., Russ. J. Inorg. Chem. 63, 116 (2018). https://doi.org/10.1134/S0036023618010175

    Article  CAS  Google Scholar 

  26. X. P. Zhao, X. P. Zhang, Y. Y. Yang, et al., J. Chem. Eng. Data 62, 1377 (2017). https://doi.org/10.1021/acs.jced.6b00926

    Article  CAS  Google Scholar 

  27. S. H. Song and J. Peng, Chin. J. Chem. 28, 755 (2010). https://doi.org/10.1002/cjoc.201090142

    Article  Google Scholar 

  28. S. Tursunbadalov, Russ. J. Inorg. Chem. 65, 412 (2020). https://doi.org/10.1134/s0036023620030195

    Article  CAS  Google Scholar 

  29. X. D. Yu, Y. Zeng, S. S. Guo, et al., J. Chem. Eng. Data 61, 1246 (2016). https://doi.org/10.1021/acs.jced.5b00888

    Article  CAS  Google Scholar 

  30. L. X. Zhu, S. Y. Gao, B. Wang, et al., Chin. J. Inorg. Chem. 19, 491 (2003). https://doi.org/10.3321/j.issn:1001-4861.2003.03.023

    Article  CAS  Google Scholar 

  31. F. Yuan, J. Jiang, S. Q. Wang, et al., J. Mol. Liq. 337, 116334 (2021). https://doi.org/10.1016/j.molliq.2021.116334

    Article  CAS  Google Scholar 

  32. S. Q. Wang, Y. Song, X. M. Du, et al., Russ. J. Inorg. Chem. 63, 116 (2018). https://doi.org/10.1134/S0036023618010175

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Program of the National Natural Science Foundation of China (22078247, U1707602, and U1507109), the Natural Science Foundation of Hebei Province (B2021202058), and the Yangtze Scholars and Innovative Research Team in University of Ministry of Education of China (IRT-17R81).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-qiang Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia-ying He, Wang, Dy., Wang, Mm. et al. Solubilities, Densities, and Refractive Indices of the Quaternary System (NaCl + NaBO2 + KCl + KBO2 + H2O) at 288.15 K. Russ. J. Inorg. Chem. 67, 2239–2246 (2022). https://doi.org/10.1134/S0036023622700127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622700127

Keywords:

Navigation