Skip to main content
Log in

Glass Formation in the MgC6H6O7–H2O System: Synthesis of Amorphous Magnesium Citrate

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the MgC6H6O7–H2O system, glass formation was detected for the first time, and the boundaries of the glass formation region were found to be in the range from 50 to 77 wt % MgC6H6O7. Glass-forming samples and the amorphous water-soluble compound MgC6H6O7 obtained by dehydration of the glass of the composition MgC6H6O7⋅3.5H2O at 40°C were studied by X-ray powder diffraction analysis, IR spectroscopy, and differential scanning calorimetry. The compositions of glass-forming samples resistant to crystallization were determined. The criterion for the crystallization resistance of glasses is the absence of crystallization during heating. The thermal curves of such glasses show only the event of Tg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O. A. Gromova, I. Yu. Torshin, and T. R. Grishina, Trudnyi Patsient 8, 35 (2010).

    Google Scholar 

  2. O. A. Prokopovich, A. G. Kalacheva, I. Yu. Torshin, et al., Med. Sovet 11, 90 (2015). https://doi.org/10.21518/2079-701X-2015-11

    Article  Google Scholar 

  3. Fuji KagaKu Kogyo, Patent Japan No. OZ 55108814 (1979).

  4. B. L. Zeller, R. Ch. Dinvudi, et al., RF Patent No. 2363269, Byull. Izobret. No. 22 (2009).

  5. I. A. Kirilenko, V. P. Danilov, L. I. Demina, RF Patent No. 2756322, Byull. Izobret. No. 28 (2021).

  6. I. A. Kirilenko, Water-Electrolyte Glass-Forming Systems (Krasand, Moscow, 2016) [in Russian].

    Google Scholar 

  7. E. G. Tarakanova and I. A. Kirilenko, J. Non-Cryst. Solids 573, 121130 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121130

    Article  CAS  Google Scholar 

  8. G. D. Elliott, S. Wang, and B. J. Fuller, Cryobiology 76, 74 (2017). https://doi.org/10.1016/j.cryobiol.2017.04.004

  9. A. A. Kostyaev, A. K. Martusevich, and A. A. Andreev, Nauch. Obozr. Med. Nauki 6, 54 (2016).

    Google Scholar 

  10. A. V. Zinchenko and E. N. Bobrova, Dop. Nats. Akad. Nauk Ukr. 12, 166 (2010).

    Google Scholar 

  11. Y. D. Tretyakov, N. N. Oleynikov, and O. A. Shlyakhtin, Cryochemical Technology of Advanced Materials (Chapman & Hall, London, 1997).

    Google Scholar 

  12. C. Polge, A. U. Smith, and A. S. Parkes, Nature 164, 666 (1949).

    Article  CAS  PubMed  Google Scholar 

  13. A. P. Mackenzie, Nature 220, 1315 (1968).

    Article  PubMed  Google Scholar 

  14. I. A. Kirilenko, A. A. Vinokurov, V. P. Danilov et al., Russ. J. Inorg. Chem. 65, 989 (2020). https://doi.org/10.1134/S003602362006008X

    Article  CAS  Google Scholar 

  15. N. A. Kochetkova, A. A. Shaposhnikova, A. V. Khmyrov, et al., Nauch. Ved. 3, 58 (2009).

    Google Scholar 

  16. M. Dakanali, E. T. Kefalas, C. P. Raptopoulou, et al., Inorg. Chem. A 42, 2537 (2003). https://doi.org/10.1021/ic0205029

  17. E. T. Kefalas, M. Dakanali, P. Panagiotidis, et al., Inorg. Chem. 44, 4818 (2005). https://doi.org/10.1021/ic050286e

    Article  CAS  PubMed  Google Scholar 

  18. A. Rammohan and J. A. Kaduk, Acta Crystallogr. E73, 227 (2017). https://doi.org/10.1107/S2056989017000743

    Article  CAS  Google Scholar 

  19. J. A. Kaduk, Acta Crystallogr. E76, 1611 (2020). https://doi.org/10.1107/S2056989020011913

    Article  CAS  Google Scholar 

  20. C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).

    Article  CAS  Google Scholar 

  21. I. A. Kirilenko and L. I. Demina, Russ. J. Inorg. Chem. 63, 1368 (2018). https://doi.org/10.1134/S0036023618100108

    Article  CAS  Google Scholar 

  22. I. A. Kirilenko, L. I. Demina, and V. P. Danilov, Russ. J. Inorg. Chem. 64, 1089 (2019). https://doi.org/10.1134/S0036023619100073

    Article  Google Scholar 

  23. J. Brand and G. Eglinton, Application of Spectroscopy in Organic Chemistry (Mir, Moscow, 1967) [in Russian].

  24. T. B. Kuvshinova, V. M. Skorikov, V. D. Volodin, and L. I. Demina, J. Inorg. Chem. 58, 1446 (2013). https://doi.org/10.7868/S0044457X13110123

    Article  Google Scholar 

  25. R. M. Silverstein, g. C. Bassler and t. C. Morrill, Spectrometric Identification of Organic Compounds, 5th Ed. (Wiley, New York, 1991).

  26. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, 2006). https://doi.org/10.1002/0470027320.s4104

Download references

ACKNOWLEDGMENTS

We thank Dr. Sci. (Chem.) I. A. Efimenko and Cand. Sci. (Chem.) I. S. Ivanova for valuable remarks made during the preparation of the article for publication.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under a state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kirilenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilenko, I.A., Demina, L.I. & Danilov, V.P. Glass Formation in the MgC6H6O7–H2O System: Synthesis of Amorphous Magnesium Citrate. Russ. J. Inorg. Chem. 67, 1731–1738 (2022). https://doi.org/10.1134/S0036023622700073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622700073

Keywords:

Navigation