Skip to main content

Advertisement

Log in

Preparation of magnesium diniobate by solid–state reactions and its role for hydrogen storage

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A ternary compound of magnesium diniobate (MgNb2O6) was prepared by solid–state reactions in order to understand the role of transition metal oxides as a promoter/catalyst for hydrogen storage in Mg/MgH2 systems. MgNb2O6 was prepared in almost pure form in oxidizing conditions by annealing a stoichiometric mixture of MgO and Nb2O5. The effect of calcination temperatures on phase formation, reaction kinetics, and heat of reaction of the solid–state product was investigated by ex situ, in situ X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Hydrogen sorption properties of the compound were investigated by mass spectrometer. The crystallographic parameters of binary and ternary Mg–Nb–O phases were extracted by Rietveld method. During solid–state synthesis, the formation of MgNb2O6 provides single-step reaction between precursor materials proved by in situ experiment and the heat of formation as well as driving force was calculated from calorimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedrich, O., Aguey-Zinsou, F., Fernandez, J.R.A., Sanchez-Lopez, J.C., Justo, A., Klassen, T., Bormann, R., Fernandez, A.: MgH2 with Nb2O5 as additive for hydrogen storage: chemical, structural and kinetic behavior with heating. J Acta Mater. 54(1), 105–110 (2006)

    Article  Google Scholar 

  2. Schimmel, H.G., Huot, J., Chapon, L.C., Tichelaar, F.D., Mulder, F.M.: Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J Am Chem Soc. 127(41), 14348–14354 (2005)

    Article  Google Scholar 

  3. Mandal, T.K., Sebastian, L., Gopalakrishnan, J., Abrams, L., Goodenough, J.B.: Hydrogen uptake by barium manganite at atmospheric pressure. Mater Res Bull. 39(14–15), 2257–2264 (2004)

    Article  Google Scholar 

  4. Rahman, M.W., Livraghi, S., Dolci, F., Giamello, E., Baricco, M.: Hydrogen sorption properties of ternary Mg–Nb–O phases synthesized by solid–state reaction. Int J Hydrog Energy. 36, 7932–7936 (2011)

    Article  Google Scholar 

  5. Rahman, M.W., Castellero, A., Enzo, S., Livraghi, S., Giamello, E., Baricco, M.: Effect of Mg-Nb oxides addition on kinetics of hydrogen storage in MgH2. J Alloys Compd. 509S, S438–S443 (2011)

    Article  Google Scholar 

  6. Friedrich, O., Sanchez-Lopez, J.C., Lopez-Cartez, C., Klassen, T., Bormann, R., Fernandez, A.: Nb2O5 “pathway effect” on hydrogen sorption in Mg. J Phys Chem B. 110(15), 7845–7850 (2006)

    Article  Google Scholar 

  7. Norin, R., Arbin, C., Nolander, B.: Note on the phase composition of MgO–Nb2O5 system. Acta Chem Scand. 26(8), 3389–3390 (1972)

    Article  Google Scholar 

  8. Joy, P.A., Sreedhar, K.: Formation of lead magnesium niobate perovskite from niobate precursors having varying magnesium content. J Am Ceram Soc. 80(3), 770–772 (1997)

    Article  Google Scholar 

  9. Goo, E., Yamamoto, T., Okazaki, K.: Microstructure of lead–magnesium–niobate ceramics. J Am Ceram Soc. 69, C188–C190 (1986)

    Article  Google Scholar 

  10. Wang, H.C., Schulze, W.A.: The role of excess magnesium oxide or lead oxide in determining the microstructure and properties of lead magnesium niobate. J Am Ceram Soc. 73(4), 825–832 (1990)

    Article  Google Scholar 

  11. Butcher S.J., Relaxor ferroelectricity in (PbxBa1–x)(Mg1/3Nb2/3)O3 ceramics, Ph.D. thesis, University of Leeds, 1989

  12. Swartz, S.L., Shrout, T.R.: Fabrication of perovskite lead magnesium niobate. Mater Res Bull. 17(10), 1245–1250 (1982)

    Article  Google Scholar 

  13. Saha, D., Sen, A., Maiti, H.S.: Solid–state synthesis of precursor MgNb2O6 for the preparation of Pb(Mg1/3Nb2/3)O9. J Mater Sci Lett. 13, 723–724 (1994)

    Article  Google Scholar 

  14. Sreedhar, K., Mitra, A.: Formation of lead magnesium niobate perovskite from MgNb2O6 and Pb3Nb2O8 precursors. Mater Res Bull. 32(12), 1643–1649 (1997)

    Article  Google Scholar 

  15. Zaldo, C., Martin, M.J., Coya, C., Polgar, K., Peter, A., Paitz, J.: Optical properties of MgNb2O6 single crystals: a comparison with LiNbO3. J Phys Condens Matter. 7(11), 2249–2257 (1995)

    Article  Google Scholar 

  16. Raubach, C.W., Santana, Y.V.B., Ferrer, M.M., Longo, V.M., Varela, J.A., Avansi Jr., W., Buzolin, P.G.C., Sambrano, J.R., Longo, E.: Strutural and optical approach of CdS@ZnS core–shell system. Chem Phys Lett. 536, 96–99 (2012)

    Article  Google Scholar 

  17. Cavalcante, L.S., Gurgel, M.F.C., Simes, A.Z., Longo, E., Varela, J.A., Joya, M.R., Pisani, P.S.: Intense visible photoluminescence in Ba(Zr0.25Ti0.75)O3 thin films. Appl Phys Lett. 90, 011901–011903 (2007)

    Article  Google Scholar 

  18. Santos, L.P.S., Cavalcante, L.S., Fabbro, M.T., Beltrán Mir, H., Cordoncillo, E., Andrés, J., Longo, E.: Structural and optical properties of ZnS/MgNb2O6 heterostructures. Superlattice Microst. 79, 180–192 (2015)

    Article  Google Scholar 

  19. Ishizumi, A., Kanemitsu, Y.: Luminescence spectra and dynamics of Mn-doped CdS core/shell nanocrystals. Adv Mater. 18(8), 1083–1085 (2006)

    Article  Google Scholar 

  20. Papulovskiy, E., Shubin, A.A., Terskikh, V.V., Pickard, C.J., Lapina, O.B.: Theoretical and experimental insights into applicability of solid–state 93Nb NMR in catalysis. Phys Chem Chem Phys. 15(14), 5115–5131 (2013)

    Article  Google Scholar 

  21. Hong, Y.S., Park, H.B., Kim, S.J.: Preparation of Pb(Mg1/3Nb2/3)O3 powder using a citrate–gel derived columbite MgNb2O6 precursor and its dielectric properties. J Eur Ceram Soc. 18(6), 613–619 (1998)

    Article  Google Scholar 

  22. Kim, N.K.: Synthesis chemistry of MgNb2O6 and Pb(Mg1/3Nb2/3)O–3. Mater. Let. 32(2–3), 127–130 (1997)

    Article  Google Scholar 

  23. Camargo, E.R., Kakihana, M., Longo, E., Leite, E.R.: Pyrochlore-free Pb(Mg1/3Nb2/3)O3 prepared by a combination of the partial oxalate and the polymerized complex methods. J Alloys Compd. 314(1), 140–146 (2001)

    Article  Google Scholar 

  24. Pagola, S., Carbonio, R.E., Alonso, J.A., Fernàndez-Dìaz, M.T.: Crystal structure of MgNb2O6 columbite from neutron powder diffraction data and study of the ternary system MgO–Nb2O5–NbO, with evidence of formation of new reduced pseudobrookite Mg5–xNb4+xO15–∂ (1.14≤ x≤ 1.60) phases. J Solid State Chem. 134(1), 76–84 (1997)

    Article  Google Scholar 

  25. Ananta, S.: Phase morphology evolution of magnesium niobate powders synthesized by solid–state reaction. Mat Lett. 58(22–23), 2781–2786 (2004)

    Article  Google Scholar 

  26. Sun, D.C., Senz, S., Hesse, D.: Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions. J Eur Ceram Soc. 26(15), 3181–3190 (2006)

    Article  Google Scholar 

  27. Dolci, F., Di Chio, M., Baricco, M., Giamello, E.: The interaction of hydrogen with oxidic promoters of hydrogen storage in magnesium hydride. Mater Res Bull. 44(1), 194–197 (2009)

    Article  Google Scholar 

  28. Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A.S., Richardson, J.W.: Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 81(2), 594–600 (1997)

  29. Ananta, S., Brydson, R., Thomas, N.W.: Synthesis, formation and characterisation of MgNb2O6 powder in a columbite-like phase. J Eur Ceram Soc. 19(3), 355–362 (1999)

    Article  Google Scholar 

  30. Yu, Y., Feng, C., Li, C., Yang, Y., Yao, W., Yan, H.: Formation of columbite-type precursors in the mixture of MgO–Fe2O3–Nb2O5 and the effects on fabrication of perovskites. Mater Lett. 51(6), 490–499 (2001)

    Article  Google Scholar 

  31. Costa, A.L., Galassi, C., Roncari, E.: Direct synthesis of PMN samples by spray-drying. J Eur Ceram Soc. 22(13), 2093–2100 (2002)

    Article  Google Scholar 

  32. Thomas, K.N., Torben, R.J.: MgH2–Nb2O5 investigated by in situ synchrotron X-ray diffraction. Int J Hydrog Energy. 37(18), 13409–13416 (2012)

    Article  Google Scholar 

  33. Friedrichs, O., Martı’nez-Martı’nez, D., Guilera, G., Lo’pez, J.C.S., Ferna’ndez, A.: In situ energy-dispersive XAS and XRD study of the superior hydrogen storage system MgH2/Nb2O5. J Phys Chem C. 111(28), 10700–10706 (2007)

    Article  Google Scholar 

  34. Jin, S.–.A., Shim, J.–.H., Ahn, J.–.P., Cho, Y.W., Yi, K.W.: Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst. Acta Mater. 55(15), 5073–5079 (2007)

    Article  Google Scholar 

  35. Chase M.W. Jr., NIST-JANAF thermochemical tables, 4th Edition, J. Phys. Chem. Ref. Data, Monogr., 9, 1–1951 (1998)

  36. Surrey, A., Nielsch, K., Rellinghaus, B.: Comments on “Evidence of the hydrogen release mechanism in bulk MgH2”. Sci Rep. 7(44216), 1–4 (2017)

  37. Berlouis, L.E.A., Cabrera, E., Hall-Barientos, E., et al.: Thermal analysis investigation of hydriding properties of nanocrystalline Mg-Ni- and Mg-Fe-based alloys prepared by high-energy ball-milling. Mater Res. 16, 45―57 (2001)

    Article  Google Scholar 

  38. XiangDong, Y., GaoQing, L.: Magnesium-based materials for hydrogen storage: recent advances and future perspectives. Chin Sci Bull. 53, 2421–2431 (2008)

    Google Scholar 

  39. Rahman, M.W.: A proposed kinetic model for hydrogen sorption in MgH2. Prog React Kinet Mech. 40, 402–408 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Professor Marcello Baricco for technical assistance.

Funding

This work is financially granted by the Ministry of Education, Universities and Research (MIUR), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Wasikur Rahman.

Electronic supplementary material

ESM 1

(DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.W. Preparation of magnesium diniobate by solid–state reactions and its role for hydrogen storage. J Aust Ceram Soc 55, 579–586 (2019). https://doi.org/10.1007/s41779-018-0265-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0265-5

Keywords

Navigation