Skip to main content
Log in

Glass Formation in the AlCl3–(CH3)2SO–H2O System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Glass formation in the AlCl–(CH3)2SO–H2O system was detected for the first time, the boundaries of the glass formation region were determined, and glass AlCl3 · 2.9(CH3)2SO · 4.8H2O was synthesized. The IR spectra of glass-forming solutions within the boundaries of the glass formation region and the glass AlCl3 · 2.9(CH3)2SO · 4.8H2O were recorded. It was concluded that (CH3)2SO enters the first coordination sphere of the aluminum ion through the oxygen atom. The glass AlCl3 · 2.9(CH3)2SO · 4.8H2O was studied by calorimetry, and its glass transition temperature was determined to be Tg = –32.3°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. A. Kirilenko, Water–Electrolyte Glass-Forming Systems (Krasand, Moscow, 2016) [in Russian].

    Google Scholar 

  2. I. A. Kirilenko and L. I. Demina, Russ. J. Inorg. Chem. 63, 1368 (2018). https://doi.org/10.1134/S0036023618100108

    Article  CAS  Google Scholar 

  3. M. P. Buera, Y. Roos, H. Levine, et al., Pure Appl. Chem. 83, 1567 (2011). https://doi.org/10.1351/PAC-REP-10-07-02

    Article  CAS  Google Scholar 

  4. J. S. Clegg, Comp. Biochem. Physiol. B 128, 613 (2001).

    Article  CAS  Google Scholar 

  5. E. Shalaev and F. Franks, in Amorphous Food and Pharmaceutical Systems, Ed. by H. Levine (RSC Publishing, Cambridge, UK, 2002), p. 200.

    Google Scholar 

  6. I. A. Solonina, M. N. Rodnikova, M. R. Kiselev, et al., Russ. J. Phys. Chem. A 92, 918 (2018).

    Article  CAS  Google Scholar 

  7. V. F. Kablov, N. U. Bykadorov, O. K. Zhokhova, et al., Vestn. Kazan. Tekhnol. Univ. 16, No. 1, 61 (2013).

    CAS  Google Scholar 

  8. Yu. N. Kukushkin, Soros. Obraz. Zh., No. 9, 54 (1997).

  9. V. P. Belousov and M. Yu. Panov, Thermodynamics of Aqueous Solutions of Nonelectrolytes (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  10. A. A. Kostyaev, A. K. Martusevich, A. A. Andreev, et al., Nauch. Obozr. Med. Nauki, No. 6, 54 (2016).

    Google Scholar 

  11. D. H. Rasmuussen and A. P. Mackenzie, Nature 220, 1315 (1968).

    Article  Google Scholar 

  12. V. P. Belousov and A. G. Morachevskii, Heats of Mixing of Liquids (Khimiya, Leningrad, 1970) [in Russian].

    Google Scholar 

  13. G. V. Rashkovskii, Z. F. Ovchinnikova, and N. V. Penkina, Zh. Prikl. Khim. 55, 1858 (1982).

    Google Scholar 

  14. U. Koatze, M. Brai, H. Sholle, et al., J. Mol. Liq. 44, 197 (1990).

    Article  Google Scholar 

  15. M. N. Rodnikova, Yu. A. Zakharova, I. A. Solonina, et al., Russ. J. Phys. Chem. A 86, 892 (2012).

    Article  CAS  Google Scholar 

  16. C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).

    Article  CAS  Google Scholar 

  17. I. A. Kirilenko, Russ. J. Inorg. Chem. 62, 1819 (2017). https://doi.org/10.1134/S00360236171140042

    Article  CAS  Google Scholar 

  18. I. A. Kirilenko, Russ. J. Inorg. Chem. 63, 1731 (2018). https://doi.org/10.1134/S0036023618130053

    Article  CAS  Google Scholar 

  19. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, New York, 1986).

    Google Scholar 

  20. S. B. Ryndarevich, Candidate’s Dissertation in Chemistry (Moscow, 1984).

  21. A. F. Fratiello, R. E. Lee, and V. M. Nishida, et al., J. Chem. Phys. 48, 3705 (1968).

    Article  CAS  Google Scholar 

  22. S. Thomas and W. N. Reynolds, Inorg. Chem. 9, 78 (1970).

    Article  CAS  Google Scholar 

  23. G. V. Yukhnevich and E. G. Kokhanov, Zh. Prikl. Spectrosk. 39, 617 (1983).

    CAS  Google Scholar 

  24. F. A. Cotton, R. Francis, and W. D. Horrocks, J. Phys. Chem. 64, 1534 (1960).

    Article  CAS  Google Scholar 

  25. Z. S. Klementovskaya, T. A. Noskova, and A. K. Lyashchenko, Zh. Fiz. Khim. Rastvorov 82, 668 (2008).

    Google Scholar 

  26. Z. S. Klemenkova and E. G. Kononova, J. Solution Chem. 44, 280 (2015). https://doi.org/10.1007/s10953-015-0300-x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The analytical studies were performed using equipment of the Center for Shared Use of Physical Methods of Investigation of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Presidium of the Russian Academy of Sciences (Basic Scientific Research Program no. 37 “Foundations of Creation of Metallic, Ceramic, and Composite Construction Materials with Improved Performance”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kirilenko.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilenko, I.A., Demina, L.I. & Danilov, V.P. Glass Formation in the AlCl3–(CH3)2SO–H2O System. Russ. J. Inorg. Chem. 64, 1282–1287 (2019). https://doi.org/10.1134/S0036023619100073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619100073

Keywords:

Navigation