Skip to main content
Log in

Structure of Nanocomposites in the ZrO2–Y2O3–Al2O3 System and Their Formation under Hydrothermal Conditions

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mutual influence of the components in the ZrO2–Y2O3–Al2O3 system on the formation of nanocomposites under hydrothermal treatment conditions has been studied. An analysis of the results obtained has shown that the presence of yttrium oxide in nanoparticles based on zirconium dioxide with a fluorite-like structure leads to active recrystallization of c-ZrO2(YO1.5) nanocrystals in the ZrO2(YO1.5)–AlO1.5 system under hydrothermal conditions. In this case, yttrium oxide partially passes from ZrO2(YO1.5) nanoparticles to an amorphous phase based on aluminum oxide. The most active transfer of yttrium oxide between ZrO2(YO1.5) nanoparticles and the amorphous phase is observed in cases where yttrium oxide is partially localized on the surface of c-ZrO2(YO1.5) nanocrystals, which is realized at a YO1.5 content in ZrO2(YO1.5) higher than ~27 mol %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. V. Almjasheva and V. V. Gusarov, Russ. J. Inorg. Chem. 52, 1194 (2007). https://doi.org/10.1134/S0036023607080062

    Article  Google Scholar 

  2. I. E. Malka, A. Danelska, and G. Kimmel, Mater. Today: Proc. 3, 2713 (2016). https://doi.org/10.1016/j.matpr.2016.06.018

    Article  Google Scholar 

  3. T. M. Ulyanova, E. M. Zub, and N. P. Krutko, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7, 49 (2002).

    Google Scholar 

  4. A. Mondal and S. Ram, Mater. Lett. 57, 1696 (2003). https://doi.org/10.1016/S0167-577X(02)01054-6

    Article  CAS  Google Scholar 

  5. E. V. Dudnik, A. V. Shevchenko, A. K. Ruban, et al., Inorg. Mater. 44, 510 (2008). https://doi.org/10.1134/S0020168508050142

    Article  CAS  Google Scholar 

  6. E. V. Dudnik, A. V. Shevchenko, A. K. Ruban, et al., Inorg. Mater. 46, 172 (2010). https://doi.org/10.1134/S0020168510020159

    Article  CAS  Google Scholar 

  7. E. V. Dudnik, V. V. Tsukrenko, A. V. Shevchenko, et al., Inorg. Mater. 47, 1107 (2011). https://doi.org/10.1134/S0020168511100050

    Article  CAS  Google Scholar 

  8. Z. Shi, H. Gao, X. Wang, et al., Microporous Mesoporous Mater. 259, 26 (2018). https://doi.org/10.1016/j.micromeso.2017.09.0

    Article  CAS  Google Scholar 

  9. I. N. Sevast’yanova, E. Yu. Sablina, and S. N. Kul’kov, Perspekt. Mater. 12, 455 (2011). https://elibrary.ru/download/elibrary_17561574_48315865.pdf.

  10. S. Yan, D. Wu, G. Ma, et al., Ceram. Int. 43, 14742 (2017). https://doi.org/10.1016/j.ceramint.2017.07.21

    Article  CAS  Google Scholar 

  11. I. S. Kuchuk and O. V. Almjasheva, Nanosyst.: Phys. Chem. Math. 3, 123 (2012). http://nanojournal.ifmo.ru/wp-content/uploads/2012/07/NPCM_2012_3_3.pdf.

  12. A. S. Gandhi and V. Jayaram, Acta Mater. 51, 1641 (2003). https://doi.org/10.1016/S1359-6454(02)00566-9

    Article  CAS  Google Scholar 

  13. Y. Guo, B. Hou, J. Wang, et al., J. Fuel Chem. Technol. 47, 540 (2019). https://doi.org/10.1016/s1872-5813(19)30024-6

    Article  CAS  Google Scholar 

  14. K. H. Hwang, J. Zhao, J. H. Kim, et al., Proc. Manuf. 2, 364 (2015). https://doi.org/10.1016/j.promfg.2015.07.064

    Article  Google Scholar 

  15. W. Du, Y. Ai, W. He, et al., Ceram. Int. 46, 8452 (2019). https://doi.org/10.1016/j.ceramint.2019.12.080

    Article  CAS  Google Scholar 

  16. C.-T. Kao, C.-H. Shen, and H.-W. Hsu, Crystals 11, 971 (2021). https://doi.org/10.3390/cryst11080971

    Article  CAS  Google Scholar 

  17. O. V. Al’myasheva, E. A. Vlasov, V. B. Khabenskii, and V. V. Gusarov, Russ. J. Appl. Chem. 82, 217 (2009). https://doi.org/10.1134/S1070427209020104

    Article  CAS  Google Scholar 

  18. J. Zhou, Q. Chang, Y. Wang, et al., Sep. Purif. Technol. 75, 243 (2010). https://doi.org/10.1016/j.seppur.2010.08.008

    Article  CAS  Google Scholar 

  19. M. Li, M. Yao, Z. Su, et al., Ceram. Int. 44, 21428 (2018). https://doi.org/10.1016/j.ceramint.2018.08.202

    Article  CAS  Google Scholar 

  20. O. V. Almjasheva, O. V. Postnov, N. V. Malceva, and E. A. Vlasov, Nanosyst.: Phys. Chem. Math. 3, 75 (2012). http://nanojournal.ifmo.ru/wp-content/uploads/2013/01/NPCM2012-3_6.pdf.

  21. S. Yan, Y. Huang, D. Zhao, et al., Additive Manuf. 28, 120 (2019). https://doi.org/10.1016/j.addma.2019.04.024

    Article  CAS  Google Scholar 

  22. O. V. Almjasheva, N. A. Lomanova, V. I. Popkov, et al., Nanosyst.: Phys. Chem. Math. 10, 428 (2019). https://doi.org/10.17586/2220-8054-2019-10-4-428-437

  23. Zh. N. Smirnova, V. V. Gusarov, A. A. Malkov, et al., Zh. Prikl. Khim. 68, 1950 (1995).

    CAS  Google Scholar 

  24. E. A. Tugova, A. A. Krasilin, V. V. Panchuk, et al., Ceram. Int. 46, 24526 (2020). https://doi.org/10.1016/j.ceramint.2020.06.239

    Article  CAS  Google Scholar 

  25. A. A. Krasilin, A. M. Suprun, and V. V. Gusarov, Russ. J. Appl. Chem. 86, 1633 (2013). https://doi.org/10.1134/S1070427213110013

    Article  CAS  Google Scholar 

  26. O. V. Almjasheva, A. V. Smirnov, B. A. Fedorov, et al., Russ. J. Gen. Chem. 84, 804 (2014). https://doi.org/10.1134/S1070363214050028

    Article  CAS  Google Scholar 

  27. A. I. Shuklina, A. V. Smirnov, B. A. Fedorov, et al., Nanosyst.: Phys. Chem. Math. 11, 729 (2020). https://doi.org/10.17586/2220-8054-2020-11-6-729-738

    Article  CAS  Google Scholar 

  28. O. V. Pozhidaeva, E. N. Korytkova, D. P. Romanov, and V. V. Gusarov, Russ. J. Gen. Chem. 72, 849 (2002). https://doi.org/10.1023/a:1020409702215

    Article  CAS  Google Scholar 

  29. N. A. Toropov, V. P. Barzakovskii, V. V. Lapin, and N. N. Kurtseva, State Diagrams of Silicate Systems. Handbook, issue 1 (Nauka, Leningrad, 1965) in Russian].

  30. State Diagrams of Refractory Oxide Systems: Handbook, issue 5 (Nauka, Leningrad, 1985) [in Russian].

  31. S. N. Lakiza and L. M. Lopato, J. Am. Ceram. Soc. 80, 893 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02919.x

    Article  CAS  Google Scholar 

  32. O. V. Almjasheva and V. V. Gusarov, Glass. Phys. Chem. 32, 162 (2006). https://doi.org/10.1134/S1087659606020064

    Article  CAS  Google Scholar 

  33. G. Dell’Agli and G. Mascolo, J. Eur. Ceram. Soc. 20, 139 (2000). https://doi.org/10.1016/S0955-2219(99)00151-X

    Article  Google Scholar 

  34. D. W. Strickler and W. G. Carlson, J. Am. Ceram. Soc. 48, 286. https://doi.org/10.1111/j.1151-2916.1965.tb14742.x

  35. O. V. Almjasheva and T. A. Denisova, Russ. J. Gen. Chem. 87, 1 (2017). https://doi.org/10.1134/S1070363217010017

    Article  CAS  Google Scholar 

  36. V. V. Gusarov and S. A. Suvorov, J. Appl. Chem. USSR 63, 1560 (1990).

    Google Scholar 

  37. V. V. Gusarov, Thermochim. Acta 256, 467 (1995).

    Article  CAS  Google Scholar 

  38. V. V. Gusarov, Russ. J. Gen. Chem. 67, 1846 (1997).

    CAS  Google Scholar 

  39. V. V. Gusarov, Z. N. Ishutina, A. A. Malkov, and A. A. Malygin, Dokl. Akad. Nauk 357, 203 (1997).

    CAS  Google Scholar 

  40. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, and V. V. Gusarov, Russ. J. Gen. Chem. 86, 2256 (2016). https://doi.org/10.1134/S1070363216100030

    Article  CAS  Google Scholar 

  41. M. Yashima, M. Kakihana, and M. Yoshimura, Solid State Ionics 8688, 1131 (1996).

Download references

ACKNOWLEDGMENTS

The authors thank Corresponding Member RAS V.V. Gusarov for constant attention to the work, interest and help in interpreting the results.

Funding

This work was supported by the Russian Science Foundation (project no. 20-63-47016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Almjasheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuklina, A.I., Almjasheva, O.V. Structure of Nanocomposites in the ZrO2–Y2O3–Al2O3 System and Their Formation under Hydrothermal Conditions. Russ. J. Inorg. Chem. 67, 904–911 (2022). https://doi.org/10.1134/S0036023622060201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060201

Keywords:

Navigation