Skip to main content
Log in

Sonochemical Synthesis of Pd Nanoparticle/ZnO Flower Photocatalyst Used for Methylene Blue and Methyl Orange Degradation under UV Radiation

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, heterostructure Pd/ZnO nanocomposites with different weight contents of the loaded Pd have been successfully synthesized by sonochemical-deposition method and used as a photocatalyst for methylene blue (MB) and methyl orange (MO) degradation. The products have been characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectrophotometry, photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The products have been composed of face-centered-cubic metallic Pd0 nanoparticles with size of 40–90 nm supported on the surface of hexagonal ZnO microstructure flowers. UV-visible absorption of the heterostructure Pd/ZnO nanocomposites has been improved by the surface plasmon resonance (SPR) effect at the Pd/ZnO interface. Photocatalytic activity of the heterostructure 5% Pd/ZnO nanocomposites has been used to degrade methylene blue (MB) and methyl orange (MO) is the highest because the loaded Pd nanoparticles play the role in capturing the photo-excited electrons and the charge separation is strengthened. The heterostructure 5% Pd/ZnO nanocomposites are very stable within five-cycle test and \(^{\bullet }{\text{O}}_{2}^{ - }\) is an active radical used for the photocatalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Selvaraj, M. K. Mohan, M. Navaneethan, et al., Mater. Sci. Semicond. Process. 103, 104622 (2019). https://doi.org/10.1016/j.mssp.2019.104622

    Article  CAS  Google Scholar 

  2. Z. Wang, X. Ye, L. Chen, et al., Mater. Sci. Semicond. Process. 121, 105354 (2021). https://doi.org/10.1016/j.mssp.2020.105354

    Article  CAS  Google Scholar 

  3. A. Fouda, S. S. Salem, A. R. Wassel, et al., Heliyon 6, e04896 (2020). https://doi.org/10.1016/j.heliyon.2020.e04896

    Article  PubMed  PubMed Central  Google Scholar 

  4. P. Raizada, A. Sudhaik, S. Patial, et al., Arabian J. Chem. 13, 8424 (2020). https://doi.org/10.1016/j.arabjc.2020.06.031

    Article  CAS  Google Scholar 

  5. J. Macan, M. Ivanko, I. Bukovčan, et al., Mater. Sci. Semicond. Process. 97, 48 (2019). https://doi.org/10.1016/j.mssp.2019.03.006

    Article  CAS  Google Scholar 

  6. A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, et al., Mater. Sci. Semicond. Process. 26, 329 (2014). https://doi.org/10.1016/j.mssp.2014.04.026

    Article  CAS  Google Scholar 

  7. A. Serrà, P. Pip, E. Gómez and L. Philippe, Appl. Catal. B 268, 118745 (2020). https://doi.org/10.1016/j.apcatb.2020.118745

    Article  CAS  Google Scholar 

  8. S. Deebansok, T. Amornsakchai, P. Sae-ear, et al., J. Environ. Chem. Eng. 9, 104746 (2021). https://doi.org/10.1016/j.jece.2020.104746

    Article  CAS  Google Scholar 

  9. L. Kaliraj, J. C. Ahn, E.J. Rupa, et al., J Photochem. Photobiol. B 199, 111588 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111588

    Article  CAS  PubMed  Google Scholar 

  10. V. E. Podasca and M. D. Damaceanu, J. Photochem. Photobiol. A 406, 113003 (2021). https://doi.org/10.1016/j.jphotochem.2020.113003

    Article  CAS  Google Scholar 

  11. M. K. Singha and A. Patra, Opt. Mater. 107, 110000 (2020). https://doi.org/10.1016/j.optmat.2020.110000

    Article  CAS  Google Scholar 

  12. W. Chen, Q. Liu, S. Tian, and X. Zhao, Appl. Surf. Sci. 470, 807 (2019). https://doi.org/10.1016/j.apsusc.2018.11.206

    Article  CAS  Google Scholar 

  13. M. Y. N. Núñez and A. M. Cruz, Mater. Sci. Semicond. Process. 81, 94 (2018). https://doi.org/10.1016/j.mssp.2018.03.012

    Article  CAS  Google Scholar 

  14. L. Xu, B. Wei, W. Liu, et al., Nanoscale Res. Lett. 8, 536 (2013). https://doi.org/10.1186/1556-276X-8-536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. G. Trindade, L. Zanchet, A. B. Trench, et al., Ionics 25, 3197 (2019). https://doi.org/10.1007/s11581-018-2822-x

    Article  CAS  Google Scholar 

  16. B. Li and Y. Wang, J. Phys. Chem. C 114, 890 (2010). https://doi.org/10.1021/jp909478q

    Article  CAS  Google Scholar 

  17. N. P. Moraes, G. S. Santos, G. C. Neves, et al., Optik 219, 165238 (2020). https://doi.org/10.1016/j.ijleo.2020.165238

    Article  CAS  Google Scholar 

  18. M. L. Tran, C. H. Nguyen, C. C. Fu, and R. S. Juang, J. Environ. Manage. 252, 109611 (2019). https://doi.org/10.1016/j.jenvman.2019.109611

    Article  CAS  PubMed  Google Scholar 

  19. A. Phuruangrat, T. Klangnoi, P. Patiphatpanya, et al., Optik 212, 164674 (2020). https://doi.org/10.1016/j.ijleo.2020.164674

    Article  CAS  Google Scholar 

  20. A. Y. S. Malkhasian and K. Narasimharao, RSC Adv. 7, 55633 (2017). https://doi.org/10.1039/c7ra11080d

  21. K. Saeed, M. Sadiq, I. Khan, et al., Appl. Water Sci. 8, 60 (2018). https://doi.org/10.1007/s13201-018-0709-7

    Article  CAS  Google Scholar 

  22. Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA 19073-3273, U.S.A. (2001).

  23. S. Guha, S. K. Ghosh, M. G. Chaudhuri, et al., J. Aust. Ceram. Soc. 56, 1089 (2020). https://doi.org/10.1007/s41779-020-00453-5

    Article  CAS  Google Scholar 

  24. A. R. Abbasian, Z. Lorfasaei, M. Shayesteh, and M. S. Afarani, J. Aust. Ceram. Soc. 56, 1119 (2020). https://doi.org/10.1007/s41779-020-00456-2

    Article  CAS  Google Scholar 

  25. A. E. Himri, M. E. Himri, D. Pérez-Coll, and P. Núñez, Res. Chem. Intermed. 41, 6397 (2015). https://doi.org/10.1007/s11164-014-1749-8

    Article  CAS  Google Scholar 

  26. H. Makhdoomi, H. M. Moghadam, and O. Zabihi, Res. Chem. Intermed. 41, 1777 (2015). https://doi.org/10.1007/s11164-013-1311-0

    Article  CAS  Google Scholar 

  27. M. N. Pahalagedara, L. R. Pahalagedara, D. Kriz, et al., Appl. Catal. B 188, 227 (2016). https://doi.org/10.1016/j.apcatb.2016.02.007

    Article  CAS  Google Scholar 

  28. A. K. Zak, W. H. Abd. Majid, M. E. Abrishami, et al., Solid State Sci. 14, 488 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.01.019

    Article  CAS  Google Scholar 

  29. S. Islam, H. Bakhtiar, K. N. Abbas, et al., J. Aust. Ceram. Soc. 55, 765 (2019). https://doi.org/10.1007/s41779-018-0288-y

    Article  CAS  Google Scholar 

  30. K. Sahu and A.K. Kar, Mater. Sci. Semicond. Process. 104, 104648 (2019). https://doi.org/10.1016/j.mssp.2019.104648

    Article  CAS  Google Scholar 

  31. A. Thøgersen, J. Mayandi, L. Vines, et al., J. Appl. Phys. 109, 084329 (2011). https://doi.org/10.1063/1.3561492

    Article  CAS  Google Scholar 

  32. M. Imran, A.B. Yousaf, X. Zhou, et al., J. Phys. Chem. C 121, 1162 (2017). https://doi.org/10.1021/acs.jpcc.6b10274

    Article  CAS  Google Scholar 

  33. H. B. Fan, S. Y. Yang, P.Y. Zhang, et al., Chinese Phys. Lett. 24, 2108 (2007). https://doi.org/10.1088/0256-307X/24/7/089

    Article  CAS  Google Scholar 

  34. D. Gao, J. Liu, L. Lyu, et al., Fiber. Polym. 21, 505 (2020). https://doi.org/10.1007/s12221-020-9347-4

    Article  CAS  Google Scholar 

  35. A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, et al., J. Ind. Eng. Chem. 61, 78 (2018). https://doi.org/10.1016/j.jiec.2017.12.003

    Article  CAS  Google Scholar 

  36. M. Zare, K. Namratha, S. Alghamdi, et al., Sci. Rep. 9, 8303 (2019). https://doi.org/10.1038/s41598-019-44309-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Iqbal, A. Bahadur, S. Ali, et al., J. Alloy. Compd. 858, 158338 (2020). https://doi.org/10.1016/j.jallcom.2020.158338

    Article  CAS  Google Scholar 

  38. S. Kuriakose, V. Choudhary, B. Satpati, and S. Mohapatra, Phys. Chem. Chem. Phys. 16, 17560 (2014). https://doi.org/10.1039/C4CP02228A

    Article  CAS  PubMed  Google Scholar 

  39. A. N. Kadam, D. P. Bhopate, V. V. Kondalkar, et al., J. Indust. Eng. Chem. 61, 78 (2018). https://doi.org/10.1016/j.jiec.2017.12.003

    Article  CAS  Google Scholar 

  40. H. Y. Wu, W. J. Jian, H. F. Dang, et al., Pol. J. Environ. Stud. 26, 871 (2017). https://doi.org/10.15244/pjoes/65363

    Article  CAS  Google Scholar 

  41. A. Rahman and R. Jayaganthan, Russ. J. Inorg. Chem. 64, 976 (2019). https://doi.org/10.1134/S0036023619070131

    Article  Google Scholar 

  42. A. Phuruangrat, P. Prapassornwattana, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 613 (2021). https://doi.org/10.1134/S0036023621040185

    Article  CAS  Google Scholar 

  43. J. C. Sin, S. M. Lam, H. Zeng, et al., Sep. Purif. Technol. 250, 117186 (2020). https://doi.org/10.1016/j.seppur.2020.117186

    Article  CAS  Google Scholar 

  44. M. W. Kee, S. M. Lam, J.C. Sin, et al., J. Photochem. Photobiol. A 391, 112353 (2020). https://doi.org/10.1016/j.jphotochem.2019.112353

    Article  CAS  Google Scholar 

  45. R. Georgekutty, M. K. Seery, and S. C. Pillai, J. Phys. Chem. C 112, 13563 (2008). https://doi.org/10.1021/jp802729a

    Article  CAS  Google Scholar 

  46. X. Tan, S. Zhou, H. J. Tao, et al., J. Cent. South Univ. 26, 2011 (2019). https://doi.org/10.1007/s11771-019-4148-x

    Article  CAS  Google Scholar 

  47. L. Chen and X. Feng, J. Aust. Ceram. Soc. 55, 1067 (2019). https://doi.org/10.1007/s41779-019-00319-5

    Article  CAS  Google Scholar 

  48. P. Fageria, S. Gangopadhyay, and S. Pande, RSC Adv. 4, 24962 (2014). https://doi.org/10.1039/C4RA03158J

  49. H. Lu, X. Li, Z. Zhang, and G. Shao, Mater. Res. Innov. 23, 1 (2019). https://doi.org/10.1080/14328917.2017.1395979

    Article  CAS  Google Scholar 

  50. N. P. Diantariani, E. T. Wahyuni, I. Kartini, and A. Kuncaka, IOP Conf. Ser.: Mater. Sci. Eng. 509, 012099 (2019). https://doi.org/10.1088/1757-899X/509/1/012099

  51. A. D. Mauro, M. Zimbone, M. Scuderi, et al., Nanoscale Res. Lett. 10, 484 (2015). https://doi.org/10.1186/s11671-015-1126-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. Syampurwadi, I. Primadona, V. Fauzia, and Isnaeni, IOP Conf. Ser.: Earth Environ. Sci. 483, 012042 (2020). https://doi.org/10.1088/1755-1315/483/1/012042

  53. N. Güy, S. Çakar, and M. Özacar, J. Colloid Interf. Sci. 466, 128 (2016). https://doi.org/10.1016/j.jcis.2015.12.009

    Article  CAS  Google Scholar 

  54. A. Phuruangrat, B. Kuntalue, S. Thongtem, and T. Thongtem, Optik 226, 165949 (2021). https://doi.org/10.1016/j.ijleo.2020.165949

    Article  CAS  Google Scholar 

  55. L. Zong, P. Cui, F. Qin, et al., Mater. Res. Bull. 86, 44 (2017). https://doi.org/10.1016/j.materresbull.2016.09.031

    Article  CAS  Google Scholar 

  56. H. Liang, S. Liu, H. Zhang, et al., RSC Adv. 8, 13625 (2018). https://doi.org/10.1039/c8ra01810c

    Article  CAS  Google Scholar 

  57. B. Niu and Z. Xu, Green Chem. 21, 874 (2019). https://doi.org/10.1039/C8GC02263A

    Article  CAS  Google Scholar 

  58. A. Phuruangrat, B. Kuntalue, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 332 (2021). https://doi.org/10.1134/S0036023621030128

    Article  CAS  Google Scholar 

  59. A. Phuruangrat, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 65, 1935 (2020). https://doi.org/10.1134/S0036023620120128

    Article  Google Scholar 

Download references

Funding

The research was supported from Prince of Songkla University and Ministry of Higher Education, Science, Research and Innovation under the Reinventing University Project (Grant no. REV64038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Phuruangrat.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intaphong, P., Phuruangrat, A., Yeebu, H. et al. Sonochemical Synthesis of Pd Nanoparticle/ZnO Flower Photocatalyst Used for Methylene Blue and Methyl Orange Degradation under UV Radiation. Russ. J. Inorg. Chem. 66, 2123–2133 (2021). https://doi.org/10.1134/S0036023621140047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621140047

Keywords:

Navigation