Skip to main content
Log in

Microwave-assisted synthesis of heterostructure Pd/ZnO flowers used for photocatalytic reaction of dyes illuminated by UV radiation

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Pd nanoparticles loaded on ZnO flowers were successfully synthesized by microwave-assisted deposition method. Phase, morphology, vibrational mode, composition, oxidation state, and specific surface area of heterostructure Pd/ZnO composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). Effect of weight content of the loaded Pd on photodegradation of methylene blue (MB) and methyl orange (MO) illuminated by UV radiation was evaluated. Heterostructure Pd/ZnO composites have photocatalytic efficiency higher than hexagonal ZnO flowers. Schottky Pd/ZnO interface played the role in the charge separation process. In this research, heterostructure 5% Pd/ZnO composites have the highest photodegradation of MB and MO under UV radiation. Main active species of the degradation process and stability of the photocatalyst were investigated. A proposed mechanism for photodegradation of MB and MO was also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zarezadeh, S., Habibi-Yangjeh, A., Mousavi, M., Ghosh, S.: Novel ZnO/Ag3PO4/AgI photocatalysts: Preparation, characterization, and the excellent visible-light photocatalytic performances. Mater. Sci. Semicond. Process. 119, 105229 (2020)

    Article  CAS  Google Scholar 

  2. Koutavarapu, R., Babu, B., Reddy, C.V., Reddy, I.N., Reddy, K.R., Rao, M.C., Aminabhavi, T.M., Cho, M., Kim, D., Shim, J.: ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J. Environ. Manage. 265, 110504 (2020)

    Article  CAS  Google Scholar 

  3. Kaliraj, L., Ahn, J.C., Rupa, E.J., Abid, S., Lu, J., Yang, D.C.: Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination. J. Photochem. Photobiol. B. 199, 111588 (2019)

    Article  CAS  Google Scholar 

  4. Moraes, N.P., Santos, G.S., Neves, G.C., Valim, R.B., Rocha, R.S., Landers, R., Silva, M.L.C.P., Rodrigues, L.A.: Development of Nb2O5-doped ZnO/Carbon xerogel photocatalyst for the photodegradation of 4-chlorophenol. Optik. 219, 165238 (2020)

    Article  Google Scholar 

  5. Elhalil, A., Elmoubarki, R., Farnane, M., Machrouhi, A., Mahjoubi, F.Z., Sadiq, M., Qourzal, S., Abdennouri, M., Barka, N.: Novel Ag-ZnO-La2O2CO3 photocatalysts derived from the layered double hydroxide structure with excellent photocatalytic performance for the degradation of pharmaceutical compounds. J. Sci. Ad. Mater. Dev. 4, 34–46 (2019)

    Google Scholar 

  6. Meroni, D., Gasparini, C., Michele, A.D., Ardizzone, S., Bianchi, C.L.: Ultrasound-assisted synthesis of ZnO photocatalysts for gas phase pollutant remediation: Role of the synthetic parameters and of promotion with WO3. Ultrason. Sonochem. 66, 105119 (2020)

    Article  CAS  Google Scholar 

  7. Onkani, S.P., Diagboya, P.N., Mtunzi, F.M., Klink, M.J., Olu-Owolabi, B.I., Pakade, V.: Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manage. 260, 110145 (2020)

    Article  CAS  Google Scholar 

  8. Mohammed, M.K.A.: Carbon nanotubes loaded ZnO/Ag ternary nanohybrid with improved visible light photocatalytic activity and stability. Optik. 217, 164867 (2020)

    Article  CAS  Google Scholar 

  9. Fernando, J.F.S., Shortell, M.P., Firestein, K.L., Zhang, C., Larionov, K.V., Popov, Z.I., Sorokin, P.B., Bourgeois, L., Waclawik, E.R., Golberg, D.V.: Photocatalysis with Pt−Au−ZnO and Au−ZnO hybrids: effect of charge accumulation and discharge properties of metal nanoparticles. Langmuir. 34, 7334–7345 (2018)

    Article  CAS  Google Scholar 

  10. Fageria, P., Gangopadhyay, S., Pande, S.: Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4, 24962 (2014)

    Article  CAS  Google Scholar 

  11. Rehman, N., Mehmood, M., Ali, S.M., Ramay, S.M., Alkhuraiji, T.S.: Au/ZnO hybrid composites and their optical and photocatalytic properties. Appl. Phys. A. 126, 710 (2020)

    Article  Google Scholar 

  12. Hosseini-Sarvari, M., Bazyar, Z.: Selective visible-light photocatalytic aerobic oxidation of alkenes to epoxides with Pd/ZnO nanoparticles. ChemistrySelect. 5, 8853–8857 (2020)

    Article  CAS  Google Scholar 

  13. Zhang, Y., Wang, Q., Xu, J., Ma, S.: Synthesis of Pd/ZnO composites with high photocatalytic performance by a solvothermal method. Appl. Surf. Sci. 258, 10104–10109 (2012)

    Article  CAS  Google Scholar 

  14. Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA 19073–3273, U.S.A. (2001).

  15. Rubel, M.H.K., Hossain, M.E., Parvez, M.S., Rahaman, M.M., Islam, M.S., Kumada, N., Kojima, S.: Low-temperature synthesis of potassium triniobate (KNb3O8) ceramic powder by a novel aqueous organic gel route. J. Aust. Ceram. Soc. 55, 759–764 (2019)

    Article  CAS  Google Scholar 

  16. Pandey, S., Kumar, A., Singh, N.B., Mandal, K.D.: Studies on dielectric and magnetic properties of CaCu3Ti3MnO12 ceramic synthesized via semi-wet route. J. Aust. Ceram. Soc. 56, 915–922 (2020)

    Article  CAS  Google Scholar 

  17. Öksüz, K.E., Kilinç, S., Özer, A.: Effect of calcination on microstructure development and properties of hydroxyapatite powders extracted from human and bovine bones. Trans. Indian Ceram. Soc. 78, 41–45 (2019)

    Article  Google Scholar 

  18. Phuruangrat, A., Klangnoi, T., Patiphatpanya, P., Dumrongrojthanath, P., Thongtem, S., Thongtem, T.: Sonochemical-assisted deposition synthesis of visible-light-driven Pd/Bi2MoO6 used for photocatalytic degradation of rhodamine B. J. Electron. Mater. 49, 3684–3691 (2020)

    Article  CAS  Google Scholar 

  19. Phuruangrat, A., Klangnoi, T., Patiphatpanya, P., Dumrongrojthanath, P., Thongtem, S., Thongtem, T.: Synthesis of Pd nanoparticles modified Bi2MoO6 nanoplates by microwave-assisted deposition with their enhanced visible-light-driven photocatalyst. Optik 212, 164674 (2020)

    Article  CAS  Google Scholar 

  20. Imran, M., Yousaf, A.B., Zhou, X., Jiang, Y.F., Yuan, C.Z., Zeb, A., Jiang, N., Xu, A.W.: Pd/TiO nanocatalyst with strong metal−support interaction for highly efficient durable heterogeneous hydrogenation. J. Phys. Chem. C. 121, 1162–1170 (2017)

    Article  CAS  Google Scholar 

  21. Rao, R.G., Blume, R., Hansen, T.W., Fuentes, E., Dreyer, K., Moldovan, S., Ersen, O., Hibbitts, D.D., Chabal, Y.J., Schlögl, R., Tessonnier, J.P.: Interfacial charge distributions in carbon-supported palladium catalysts. Nat. Commun. 8, 340 (2017)

    Article  Google Scholar 

  22. Sa-nguanprang, S., Phuruangrat, A., Karthik, K., Thongtem, S., Thongtem, T.: Tartaric acid-assisted precipitation of visible light-driven Ce-doped ZnO nanoparticles used for photodegradation of methylene blue. J. Aust. Ceram. Soc. 56, 1029–1041 (2020)

    Article  CAS  Google Scholar 

  23. Mou, H., Song, C., Zhou, Y., Zhang, B., Wang, D.: Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B. 221, 565–573 (2018)

    Article  CAS  Google Scholar 

  24. Ainuddin, A.R., Yup, M.Z., Kamdi, Z., Hussin, R., Ibrahim, S.A.: Effects of Ag dopant and ultraviolet irradiation on structural properties of zinc oxide nanostructures. AIP Conf. Proc. 2045, 020071 (2018)

    Article  Google Scholar 

  25. Liang, H., Liu, S., Zhang, H., Wang, X., Wang, J.: New insight into the selective photocatalytic oxidation of RhB through a strategy of modulating radical generation. RSC Adv. 8, 13625–13634 (2018)

    Article  CAS  Google Scholar 

  26. Ghobadi, A., Ulusoy, T.G., Garifullin, R., Guler, M.O., Okyay, A.K.: A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance. Sci. Rep. 6, 30587 (2016)

    Article  CAS  Google Scholar 

  27. Chen, X., Wu, Z., Liu, D., Gao, Z.: Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 143 (2017)

    Article  Google Scholar 

  28. Georgekutty, R., Seery, M.K., Pillai, S.C.: A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by the Prince of Songkla University, and the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, Office of National Higher Education Science Research, and Innovation Policy Council (NXPO) [Grant Number B16F640001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Somchai Thongtem.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuruangrat, A., Nunpradit, A., Sakhon, T. et al. Microwave-assisted synthesis of heterostructure Pd/ZnO flowers used for photocatalytic reaction of dyes illuminated by UV radiation. J Aust Ceram Soc 57, 1521–1530 (2021). https://doi.org/10.1007/s41779-021-00642-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00642-w

Keywords

Navigation