Skip to main content
Log in

Theoretical Modeling of Exo- and Endohedral Hydrogenation Reactions of the Doped Magnesium Cluster Mg17Ni

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Based on DFT and IRC calculations, the potential energy surfaces of the hydrogenation channels of the Mg17Ni cluster have been compared. In “exohedral” channels, sorption, post-sorption, and migration processes of H atoms are assumed to be localized on the cage surface with maximum barriers of ~14 kcal/mol. In the “endohedral” channel with a barrier of ~6 kcal/mol, the key role is played by transformations of the planar configuration of the surface NiH4 group into a tetrahedral one, in which two of its lower H atoms migrate through the inner cavity and enter surface positions, inverting through the square and adjacent triangular faces into the lower half of the cage. The course of the latter process requires milder conditions in comparison with exohedral channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. A. Yartys, M. V. Lototskyy, E. Akiba, et al., Int. J. Hydrogen Energy 44, 7809 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.212

    Article  CAS  Google Scholar 

  2. B. P. Tarasov, A. A. Arbuzov, S. A. Mozhzhuhin, et al., Int. J. Hydrogen Energy 45, 29212 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.033

    Article  CAS  Google Scholar 

  3. L. Ouyang, F. Liu, H. Wang, et al., J. Alloys Compd. 832, 154865 (2020). https://doi.org/10.1016/j.jallcom.2020.154865

    Article  CAS  Google Scholar 

  4. X. Yao and G. Lu, Chin. Sci. Bull. 53, 2421 (2008). https://doi.org/10.1007/s11434-008-0325-2

    Article  CAS  Google Scholar 

  5. L. J. Huang, H. Wang, J. W. Liu, et al., J. Alloys Compd. 792, 835 (2019). https://doi.org/10.1016/j.jallcom.2019.04.029

    Article  CAS  Google Scholar 

  6. H. Wang, Y. J. Ko, X. Zhang, et al., J. Chem. Phys. 140, 124309 (2014). https://doi.org/10.1063/1.4869104

    Article  CAS  PubMed  Google Scholar 

  7. Z. Luo, C. J. Grover, A. C. Reber, et al., J. Am. Chem. Soc. 135, 4307 (2013). https://doi.org/10.1021/ja310467n

    Article  CAS  PubMed  Google Scholar 

  8. C. J. Grover, A. C. Reber, and S. N. Khanna, J. Chem. Phys. 146, 2243301 (2017). https://doi.org/10.1063/1.4985093

    Article  CAS  Google Scholar 

  9. B. J. Lu, X.-T. Li, Y.-J. Zhao, et al., AIP Adv. 7, 095023 (2017). https://doi.org/10.1063/1.5000792

    Article  CAS  Google Scholar 

  10. L. Zhang, X. Ma, X. Guo, et al., J. Clust. Sci. 32, 445 (2020). https://doi.org/10.1007/s10876-020-01803-w

    Article  CAS  Google Scholar 

  11. A. Kaufmann, A. Kornath, A. Zoermer, et al., Inorg. Chem. 49, 3851 (2010). https://doi.org/10.1021/ic902485z

    Article  CAS  PubMed  Google Scholar 

  12. X. Wang and L. Andrews, J. Phys. Chem. A 108, 11511 (2004). https://doi.org/10.1021/jp046410h

    Article  CAS  Google Scholar 

  13. S. Janecek, E. Krotscheck, M. Liebrecht, et al., Eur. Phys. J. D 63, 377 (2011). https://doi.org/10.1140/epjd/e2011-10694-2

    Article  CAS  Google Scholar 

  14. A. Köhn, F. Weigend, and R. Ahlrichs, Phys. Chem. Chem. Phys. 3, 711 (2001). https://doi.org/10.1039/B007869G

    Article  Google Scholar 

  15. I. Heidari, S. De, S. M. Ghazi, et al., J. Phys. Chem. A 115, 12307 (2011). https://doi.org/10.1021/jp204442e

    Article  CAS  PubMed  Google Scholar 

  16. X. Xia, X. Kuang, C. Lu, et al., J. Phys. Chem. A 120, 677 (2016). https://doi.org/10.1021/acs.jpca.6b07322

    Article  CAS  Google Scholar 

  17. J. Jellinek and P. H. Acioli, J. Phys. Chem. A 106, 10919 (2002). https://doi.org/10.1021/jp020887g

    Article  CAS  Google Scholar 

  18. K. Duanmu, O. Roberto-Neto, F. B. C. Machado, et al., J. Phys. Chem. 120, 13275 (2016). https://doi.org/10.1021/acs.jpcc.6b03080

  19. F. Zhang, H. Zhang, W. Xin, et al., Sci. Rep. 10, 6052 (2020). https://doi.org/10.1038/s41598-020-63237-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Zeng, X.-F. Wei, M.-K. Liang, et al., Comput. Mater. Sci. 182, 109795 (2020). https://doi.org/10.1016/j.commatsci.2020.109795

    Article  CAS  Google Scholar 

  21. L. Zeng, P.-J. Deng, J. Bi, and B.-C. Zhu, J. Comput. Chem. 41, 1885 (2020). https://doi.org/10.1002/jcc.26359

    Article  CAS  PubMed  Google Scholar 

  22. B.-C. Zhu, S. Zhang, and L. Zeng, Int. J. Quantum Chem. 120, 26143 (2020). https://doi.org/10.1002/qua.26143

    Article  CAS  Google Scholar 

  23. Z. Li, Z. Zhao, Z. Zhou, et al., Mater. Chem. Phys. 199, 585 (2020). https://doi.org/10.1016/j.matchemphys.2017.07.049

    Article  CAS  Google Scholar 

  24. C. He, Y. Chen, and Y. Sheng, Eur. Phys. J. D 73, 90 (2019). https://doi.org/10.1140/epjd/e2019-90521-6

    Article  CAS  Google Scholar 

  25. A. Kumar, N. Vyas, and A. K. Ojha, Int. J. Hydrogen Energy 45, 12961 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.018

    Article  CAS  Google Scholar 

  26. L. Zeng, M.-K. Liang, X.-F. Wei, et al., J. Phys.: Condens. Matter. 33 (2020). https://doi.org/10.1088/1361-648X/abc401

  27. D. J. Henry and I. Yarovsky, J. Phys. Chem. A 113, 2565 (2009). https://doi.org/10.1016/10.1021/jp809619q

    Article  CAS  PubMed  Google Scholar 

  28. L. Wang, J. Zhao, Z. Zhou, et al., J. Comput. Chem. 30, 2509 (2009). https://doi.org/10.1016/10.1002/jcc.21239

    Article  CAS  PubMed  Google Scholar 

  29. V. K. Kochnev, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 55, 65 (2010). https://doi.org/10.1134/S0036023610010134

    Article  CAS  Google Scholar 

  30. L. Guo, J. Phys. Chem. 117, 3458 (2013). https://doi.org/10.1021/jp310833y

    Article  CAS  Google Scholar 

  31. A. A. Mikhailin, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 58, 1479 (2013). https://doi.org/10.1134/S0036023613120073

    Article  CAS  Google Scholar 

  32. A. A. Mikhailin, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 61, 1558 (2016). https://doi.org/10.1134/S0036023616120135

    Article  CAS  Google Scholar 

  33. A. A. Mikhailin, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 60, 1238 (2015). https://doi.org/10.1134/S0036023615100137

    Article  CAS  Google Scholar 

  34. R. Trivedi and D. Bandyopadhyay, Int. J. Hydrogen Energy 40, 12727 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.122

    Article  CAS  Google Scholar 

  35. R. Trivedi and D. Bandyopadhyay, Int. J. Hydrogen Energy 41, 20113 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.007

    Article  CAS  Google Scholar 

  36. A. P. Maltsev and O. P. Charkin, Russ. J. Inorg. Chem. 65, 185 (2020). https://doi.org/10.1134/S0036023620020114

    Article  CAS  Google Scholar 

  37. A. P. Maltsev and O. P. Charkin, Russ. J. Inorg. Chem. 65, 1204 (2020). https://doi.org/10.1134/S0036023620080100

    Article  Google Scholar 

  38. O. P. Charkin and A. P. Maltsev, J. Phys. Chem. A 125, 2308 (2021). https://doi.org/10.1021/acs.jpca.1c00211

    Article  CAS  PubMed  Google Scholar 

  39. A. D. Becke, J. Phys. Chem. 98, 5648 (1993). https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, 09. Revision A.02 Gaussian, Inc., Wallingford CT, 2013.

  41. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Chem. Phys. 522, 112 (2019). https://doi.org/10.1016/j.chemphys.2019.02.007

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out in the framework of the state assignment, state registration number AAAA-A19-119061890019-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Maltsev or O. P. Charkin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltsev, A.P., Charkin, O.P. Theoretical Modeling of Exo- and Endohedral Hydrogenation Reactions of the Doped Magnesium Cluster Mg17Ni. Russ. J. Inorg. Chem. 66, 1860–1867 (2021). https://doi.org/10.1134/S0036023621120111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621120111

Keywords:

Navigation