Skip to main content
Log in

Theoretical Modeling of Stepwise Addition of H2 Molecules to Magnesium Clusters Mg18 and Mg17Ni

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The potential energy surface (PES) along minimum energy paths of elementary hydrogenation reactions Mg18 + H2 → Mg18H2 and Mg17Ni + H2 → Mg17NiH2 + H2 → Mg17NiH4 + H2 → Mg17NiH6 has been calculated by the density functional theory method. Local PES minima in the vicinity of low-lying isomers, intermediates, and transition states have been determined, and their energies, geometries, and spectroscopic parameters have been calculated. The effect of the Ni dopant on the energies and activation barriers of these reactions has been examined, depending on the position of the dopant on the surface and inside the internal cavity of the Mg17 cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. P. Tarasov, A. A. Arbuzov, S. A. Mozhzhuhin, et al., Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.02.033

  2. T. R. Jensen, A. Andreasen, T. Vegge, et al., Int. J. Hydrogen Energy 31, 2052 (2006).

    Article  CAS  Google Scholar 

  3. D. S. Sholl, J. Alloys Compd. 462, 446 (2007).

    Google Scholar 

  4. X. Wang and L. Andrews, J. Phys. Chem. A 108, 11511 (2004). https://doi.org/10.1021/jp046410h

    Article  CAS  Google Scholar 

  5. A. Kaufmann, A. Kornath, Zoermer, et al., Inorg. Chem. 49, 3851 (2010). https://doi.org/10.1021/ic902485z

    Article  CAS  PubMed  Google Scholar 

  6. H. Wang, et al., J. Chem. Phys. 140, 124309 (2014). https://doi.org/10.1063/1.4869104

    Article  CAS  PubMed  Google Scholar 

  7. Z. Luo, C. J. Grover, A. C. Reber, et al., J. Am. Chem. Soc. 135, 4307 (2013). https://doi.org/10.1021/ja310467n

    Article  CAS  PubMed  Google Scholar 

  8. C. J. Grover, A. C. Reber, and S. N. Khanna, J. Chem. Phys. 146, 2243301 (2017). https://doi.org/10.1063/1.4985093

    Article  CAS  Google Scholar 

  9. Bao-Juan Lu, Xiao-Tian Li1, Yu-Jun Zhao, et al., Aip Adv. 7, 095023 (2017). https://doi.org/10.1063/1.5000792

    Article  CAS  Google Scholar 

  10. S. Janecek, E. Krotscheck, M. Liebrecht, and R. Wahl, Eur. Phys. J. 63, 377 (2011). https://doi.org/10.1140/epjd/e2011-10694-2

    Article  CAS  Google Scholar 

  11. I. Heidari, S. De, S. M. Ghazi, et al., J. Phys. Chem. A 115, 12307 (2011). https://doi.org/10.1021/jp204442e

    Article  CAS  PubMed  Google Scholar 

  12. X. Xia, X. Kuang, C. Lu, et al., J. Phys. Chem. A 120, 7947 (2016). https://doi.org/10.1021/acs.jpca.6b07322

    Article  CAS  PubMed  Google Scholar 

  13. K. Duanmu, O. Roberto-Neto, F. B. C. Machado, et al., J. Phys. Chem. C 120, 13275 (2016). https://doi.org/10.1021/acs.jpcc.6b03080

    Article  CAS  Google Scholar 

  14. D. J. Henry and I. Yarovsky, J. Phys. Chem. A 113, 2565 (2009). https://doi.org/10.1021/jp809619q

    Article  CAS  PubMed  Google Scholar 

  15. L. Wang, J. Zhao, Z. Zhou, et al., J. Comput. Chem. 30, 2514 (2009). https://doi.org/10.1002/jcc.21239

    Article  CAS  Google Scholar 

  16. V. K. Kochnev, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 55, 65 (2010).

    Article  CAS  Google Scholar 

  17. L. Guo, J. Phys. Chem. 117, 3458 (2013). https://doi.org/10.1021/jp310833y

    Article  CAS  Google Scholar 

  18. A. A. Mikhailin, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 57, 528 (2012).

    Article  CAS  Google Scholar 

  19. A. A. Mikhailin, OP. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 58, 1439 (2013). https://doi.org/10.1134/S0036023613120073

    Article  CAS  Google Scholar 

  20. A. Varano, D. J. Henry, and I. Yarovsky, J. Phys. Chem. C 118, 19865 (2014).

    Google Scholar 

  21. J. Vanbuel, E. M. Fernandes, P. Ferrary, et al., Chem.-Eur. J. 23, 15638 (2017). https://doi.org/10.1002/chem.201704361

    Article  CAS  PubMed  Google Scholar 

  22. J. Vanbuel, M.-Y. Jia, P. Ferrary, et al., Top. Catal. 61 62 (2018). https://doi.org/10.1007/s11244-017-0878-x

    Article  CAS  Google Scholar 

  23. M.-Y. Jia, J. Vanbuel, V. Ferrary, et al., J. Phys. Chem. C 122, 18247 (2018). https://doi.org/10.1021/acs.jpcc.8b04332

    Article  CAS  Google Scholar 

  24. A. A. Mikhailin, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem. 60, 1238 (2015). https://doi.org/10.1134/S0036023615100137

    Article  CAS  Google Scholar 

  25. R. Trivedi and D. Bandyopadhyay, Int. J. Hydrogen Energy 40, 12727 (2015).

    Article  CAS  Google Scholar 

  26. R. Trivedi and D. Bandyopadhyay, Int. J. Hydrogen Energy 41, 20113 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.007

    Article  CAS  Google Scholar 

  27. M. J. Frisch, et al., Gaussian, 09, Revision A.02 Gaussian, Inc., Wallingford CT, 2013.

  28. A. D. Becke, J. Phys. Chem. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  29. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Chem. Phys. 522, 112 (2019). https://doi.org/10.10167/champhys.2019.02.007

    Article  CAS  Google Scholar 

  30. O. P. Charkin and N. M. Klimenko, Russ. J. Inorg. Chem. 63, 479 (2018). https://doi.org/10.1134/S0036023618040058

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed in the framework of State Assignment no. 0089-2019-0007 and supported by the Russian Foundation for Basic Research (project no. 18-03-01156a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Maltsev or O. P. Charkin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltsev, A.P., Charkin, O.P. Theoretical Modeling of Stepwise Addition of H2 Molecules to Magnesium Clusters Mg18 and Mg17Ni. Russ. J. Inorg. Chem. 65, 185–192 (2020). https://doi.org/10.1134/S0036023620020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620020114

Keywords:

Navigation