Skip to main content
Log in

Magnesium-based materials for hydrogen storage: Recent advances and future perspectives

  • Review
  • Materials Sciences
  • Published:
Chinese Science Bulletin

Abstract

Hydrogen storage is a real challenge for realizing “hydrogen economy” that will solve the critical issues of humanity such as energy depletion, air pollution, greenhouse emission and climate change. Recently, tremendous efforts have been devoted to this internationally focused area. Magnesium (Mg) is among the most promising candidates for this purpose and attracts numerous research interests. This paper is aiming at reviewing recent literatures on approaches and progress, the necessity of further research, and future direction to the research of Mg for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPHE Report of USA, European Commission, Japan, Australia and China. www.iphe.net

  2. Kruger R. Hydrogen & Fuel Cell Activities at Ford. Hydrogen Vehicles-Onboard Storage Systems, Cologne, 2002

  3. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414: 353–358

    Article  PubMed  CAS  Google Scholar 

  4. FY 2003 Progress Report. Hydrogen, Fuel Cells and Infrastructure Technologies Program, 2003

  5. Amankwah K A G, Noh J S, Schwarz J A. Hydrogen storage on superactivated carbon at refrigeration temperatures. Int J Hydrogen Energy, 1989, 14: 437–447

    Article  CAS  Google Scholar 

  6. Hynek S, Fuller W, Bentley J. Hydrogen storage by carbon sorption. Int J Hydrogen Energy, 1997, 22(6): 601–610

    Article  CAS  Google Scholar 

  7. Ajayan P M, Ebbesen T W. Nanometre-size tubes of carbon. Rep Prog Phys, 1997, 60: 1025–1062

    Article  CAS  Google Scholar 

  8. Tibbetts G G, Meisner G P, Olk C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon, 2001, 39: 2291–2301

    Article  CAS  Google Scholar 

  9. Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286: 1127–1129

    Article  PubMed  CAS  Google Scholar 

  10. Yang Z X, Xia Y D, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc, 2007, 129: 1673–1679

    Article  PubMed  CAS  Google Scholar 

  11. Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300: 1127–1129

    Article  PubMed  CAS  Google Scholar 

  12. Panella B, Hirscher M. Hydrogen physisorption in metal-organic porous crystals. Adv Mater, 2005, 17: 538

    Article  CAS  Google Scholar 

  13. Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc, 2006, 128: 1304–1315

    Article  PubMed  CAS  Google Scholar 

  14. Han S S, Deng W Q, Goddard W A. Improved designs of metal-organic frameworks for hydrogen storage. Angew Chem Int Edit, 2007, 46: 6289–6292

    Article  CAS  Google Scholar 

  15. Zaluski L, Zaluska A, Strom-Olsen J O. Nanocrystalline metal hydrides. J Alloys Comp, 1997, 253: 70–79

    Article  Google Scholar 

  16. Huot J, Liang G, Schulz R. Mechanically alloyed metal hydride systems. Appl Phys A, 2001, 72: 187–195

    Article  CAS  Google Scholar 

  17. Schuth F, Bogdanovic B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage. Chem Comm, 2004, 20: 2249–2258

    Article  PubMed  CAS  Google Scholar 

  18. Schimmel H G, Huot J, Chapon L C, et al. Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J Am Chem Soc, 2005, 127: 14348–14354

    Article  PubMed  CAS  Google Scholar 

  19. Yartys V A, Riabov A B, Denys R V, et al. Novel intermetallic hydrides. J Alloys Comp, 2006, 408: 273–279

    Article  CAS  Google Scholar 

  20. Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy, 2007, 32: 1121–1140

    Article  CAS  Google Scholar 

  21. Bogdanovic B, Felderhoff M, Kaskel S, et al. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Adv Mater, 2003, 15: 1012

    Article  CAS  Google Scholar 

  22. Chen J, Kuriyama N, Xu Q, et al. Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. Phys Chem B, 2001, 105: 11214–11220

    Article  CAS  Google Scholar 

  23. Gross K J, Majzoub E H, Spangler S W. The effects of titanium precursors on hydriding properties of alanates. J Alloys Comp, 2003, 356: 423–428

    Article  CAS  Google Scholar 

  24. van Setten M J, de Wijs G A, Brocks G. Model for the formation energies of alanates and boranates. J Phys Chem C, 2007, 111: 9592–9594

    Article  CAS  Google Scholar 

  25. Xiong Z T, Wu G T, Hu H J, et al. Ternary imides for hydrogen storage. Adv Mater, 2004, 16: 1522

    Article  CAS  Google Scholar 

  26. Chen P, Xiong Z T, Luo J Z, et al. Interaction of hydrogen with metal nitrides and imides. Nature, 2002, 420: 302–304

    Article  PubMed  CAS  Google Scholar 

  27. Gutowska A, Li L Y, Shin Y S, et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Edit, 2005, 44: 3578–3582

    Article  CAS  Google Scholar 

  28. Bluhm M E, Bradley M G, Butterick R, et al. Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc, 2006, 128: 7748–7749

    Article  PubMed  CAS  Google Scholar 

  29. Paul A, Musgrave C B. Catalyzed dehydrogenation of ammonia-borane by iridium dihydrogen pincer complex differs from ethane dehydrogenation. Angew Chem Int Edit, 2006, 46: 8153–8156

    Article  CAS  Google Scholar 

  30. Keaton R J, Blacquiere J M, Baker R T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc, 2007, 129: 1844

    Article  PubMed  CAS  Google Scholar 

  31. Selvam P, Viswanathan B, Swamy C S, et al. Magnesium and magnesium alloy hydrides. Int J Hydrogen Energy, 1986, 11: 169–192

    Article  CAS  Google Scholar 

  32. Gerard N, Ono S. Hydrogen in Intermetallic Compounds II. New York: Springer-Verlag, 1992. 178–182

    Google Scholar 

  33. Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev, 2004, 104: 1283–1315

    Article  PubMed  CAS  Google Scholar 

  34. Zaluska A, Zaluski L, Strom-Olsen J O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl Phys A, 2001, 72: 157–165

    Article  CAS  Google Scholar 

  35. Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline magnesium for hydrogen storage. J Alloys Comp, 1999, 288: 217–225

    Article  CAS  Google Scholar 

  36. Krozer A, Kasemo B. Equilibrium hydrogen uptake and association kinetics for the Mg-H2 system at low pressures. J Phys Cond Matt, 1989, 1: 1533–1538

    Article  CAS  Google Scholar 

  37. Zaluski L, Zaluska A, Strom-Olsen J O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Comp, 1995, 217: 245–249

    Article  CAS  Google Scholar 

  38. Nohara S, Fujita N, Zhang S G, et al. Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni. J Alloys Comp, 1998, 267: 76–78

    Article  CAS  Google Scholar 

  39. Zhang Y S, Yang H B, Yuan H T, et al. Dehydriding properties of ternary Mg2Ni1−x Zrx hydrides synthesized by ball milling and annealing. J Alloys Comp, 1998, 269: 278–283

    Article  CAS  Google Scholar 

  40. Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Comp, 1999, 292: 247–252

    Article  CAS  Google Scholar 

  41. Shang C X, Bououdina M, Song Y, et al. Mechanical alloying and electronic simulations of (MgH2 + M) systems (M-Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int J Hydrogen Energy, 2004, 29: 73–80

    Article  CAS  Google Scholar 

  42. Yavari A R, LeMoulec A, de Castro F R, et al. Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition. Scr Mater, 2005, 52: 719–724

    Article  CAS  Google Scholar 

  43. Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J Phys Chem B, 2005, 109: 7188–7194

    Article  PubMed  CAS  Google Scholar 

  44. Yermakov A Y, Mushnikov N V, Uimin M A, et al. Hydrogen reaction kinetics of Mg-based alloys synthesized by mechanical milling. J Alloys Comp, 2006, 425: 367–372

    Article  CAS  Google Scholar 

  45. Dufour J, Huot J. Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg-Pd 2.5 at%. J Alloys Comp, 2007, 439: L5–L7

    Article  CAS  Google Scholar 

  46. Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Comp, 2001, 315: 237–242

    Article  CAS  Google Scholar 

  47. Song M Y, Bobet J L, Darriet B. Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3 and CeO2. J Alloys Comp, 2002, 340: 256–262

    Article  CAS  Google Scholar 

  48. Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr Mater, 2003, 49: 213–217

    Article  CAS  Google Scholar 

  49. Friedrichs O, Aguey-Zinsou F, Fernandez J R A, et al. MgH2 with Nb2O5 as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating. Acta Mater, 2006, 54: 105–110

    Article  CAS  Google Scholar 

  50. Aguey-Zinsou K F, Fernandez J R A, Klassen T, et al. Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy, 2007, 32: 2400–2407

    Article  CAS  Google Scholar 

  51. Gross K J, Spatz P, Zuttel A, et al. Mechanically milled Mg composites for hydrogen storage—The transition to a steady state composition. J Alloys Comp, 1996, 240: 206–213

    Article  CAS  Google Scholar 

  52. Wang P, Wang A M, Ding B Z, et al. Mg-FeTi1.2 (amorphous) composite for hydrogen storage. J Alloys Comp, 2002, 334: 243–248

    Article  CAS  Google Scholar 

  53. Wang H, Ouyang L Z, Peng C H, et al. MmM(5)/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering. J Alloys Comp, 2004, 370: L4–L6

    Article  CAS  Google Scholar 

  54. Kondo T, Shindo K, Sakurai Y. Dependence of hydrogen storage characteristics of Mg-TiFe0.92Mn0.08 composite on amount of TiFe0.92Mn0.08. J Alloys Comp, 2005, 404: 511–514

    Article  CAS  Google Scholar 

  55. Barkhordarian G, Klassen T, Bormann R. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J Phys Chem B, 2006, 110: 11020–11024

    Article  PubMed  CAS  Google Scholar 

  56. Yu Z X, Liu Z Y, Wang E D. Hydrogen storage properties of nanocomposite Mg-Ni-Cu-CrCl3 prepared by mechanical alloying. Mater Sci Eng A, 2003, 335: 43–48

    Google Scholar 

  57. Yu Z X, Liu Z Y, Wang E D. Hydrogen storage properties of the Mg-Ni-CrCl3 nanocomposite. J Alloys Comp, 2002, 333: 207–214

    Article  CAS  Google Scholar 

  58. Xie L, Liu Y, Wang Y T, et al. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3. Acta Mater, 2007, 55: 4585–4591

    Article  CAS  Google Scholar 

  59. Jin S A, Shim J H, Cho Y W, et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J Power Sources, 2007, 172: 859–862

    Article  CAS  Google Scholar 

  60. Imamura H, Kusuhara M, Minami S, et al. Carbon nanocomposites synthesized by high-energy mechanical milling of graphite and magnesium for hydrogen storage. Acta Mater, 2003, 51: 6407–6414

    Article  CAS  Google Scholar 

  61. Fujii H, Orimo S. Hydrogen storage properties in nano-structured magnesium-and carbon-related materials. Physica B, 2003, 328: 77–80

    Article  CAS  Google Scholar 

  62. Shang C X, Guo Z X. Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. J Powder Sources, 2004, 129: 73–80

    Article  CAS  Google Scholar 

  63. Takasaki A, Furuya Y, Katayama M. Mechanical alloying of graphite and magnesium powders, and their hydrogenation. J Alloys Comp, 2007, 446: 110–113

    Article  CAS  Google Scholar 

  64. Narayanan D L, Lueking A D. Mechanically milled coal and magnesium composites for hydrogen storage. Carbon, 2007, 45: 805–820

    Article  CAS  Google Scholar 

  65. Vegge T. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory. Phys Rev B, 2004, 70: 035412

    Google Scholar 

  66. Du A J, Smith S C, Yao X D, et al. The role of Ti as a catalyst for the dissociation of hydrogen on a Mg(0001) surface. J Phys Chem B, 2005, 109: 18037–18041

    Article  PubMed  CAS  Google Scholar 

  67. Du A J, Smith S C, Yao X D, et al. Catalytic effects of subsurface carbon in the chemisorption of hydrogen on a Mg(0001) surface: An ab-initio study. J Phys Chem B, 2006, 110: 1814–1819

    Article  PubMed  CAS  Google Scholar 

  68. Du A J, Smith S C, Yao X D, et al. Ab initio studies of hydrogen desorption from low index magnesium hydride surface. Surf Sci, 2006, 600: 1854–1859

    Article  CAS  Google Scholar 

  69. Du A J, Smith S C, Yao X D, et al. First-principle study of adsorption of hydrogen on Ti-doped Mg(0001) surface. J Phys Chem B, 2006, 110: 21747–21750

    Article  PubMed  CAS  Google Scholar 

  70. Du A J, Smith S C, Yao X D, et al. Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation. J Am Chem Soc, 2007, 129: 10201–10204

    Article  PubMed  CAS  Google Scholar 

  71. Yao X D, Wu C Z, Du A J, et al. Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. J Am Chem Soc, 2007, 129: 15650–15654

    Article  PubMed  CAS  Google Scholar 

  72. Du A J, Smith S C, Yao X D, et al. Catatytic effect of V2O5 on the dissociation of hydrogen on a Mg(0001) surface. Appl Phys Lett, 2008, 92: 163106–163108

    Article  CAS  Google Scholar 

  73. Du A J, Smith S C, Yao X D, et al. Atomic hydrogen diffusion in novel magnesium nanostructures: The impact of incorporated subsurface carbon atoms. J Phys: Conf Ser, 2006, 29: 167–172

    Article  CAS  Google Scholar 

  74. Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412: 169–172

    Article  PubMed  CAS  Google Scholar 

  75. Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386: 377–379

    Article  CAS  Google Scholar 

  76. Lin J Y. Hydrogen storage in nanotubes. Science, 2000, 287: 1929–1929

    Article  CAS  Google Scholar 

  77. Wu C Z, Wang P, Yao X, et al. Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. J Alloys Comp, 2006, 414: 259–264

    Article  CAS  Google Scholar 

  78. Wu C Z, Wang P, Yao X, et al. Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J Alloys Comp, 2006, 420: 278–282

    Article  CAS  Google Scholar 

  79. Yao X D, Wu C Z, Du A J, et al. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. J Phys Chem B, 2006, 110: 11697–11703

    Article  PubMed  CAS  Google Scholar 

  80. Yao X, Wu C Z, Wang H, et al. Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites. J Nanosci Nanotech, 2006, 6: 494–498

    Article  CAS  Google Scholar 

  81. Yao X, Wu C Z, Zhu Z H, et al. Effect of Mn and Zr on hydrogen absorption in Mg-based nanocomposites. Int J Hydrogen Energy, 2008, in press

  82. Sholl D S. Using density functional theory to study hydrogen diffusion in metals: A brief overview. J Alloys Comp, 2007, 446: 462–468

    Article  CAS  Google Scholar 

  83. San-Martin A, Manchester F D. In: Nayer-Hashemi A A, Clark J B, eds. Phase Diagrams of Binary Magnesium Alloys. ASM International, 1988

  84. Berlouis L E A, Cabrera E, Hall-Barientos E, et al. Thermal analysis investigation of hydriding properties of nanocrystalline Mg-Ni-and Mg-Fe-based alloys prepared by high-energy ball milling. Mater Res, 2001, 16: 45–57

    Article  CAS  Google Scholar 

  85. Yao X, Zhu Z H, Cheng H M, et al. Modeling of hydrogen diffusion in magnesium hydrides. J Mater Res, 2008, 23: 336–340

    Article  CAS  Google Scholar 

  86. Yavari A R. Mechanically prepared nanocrystalline materials. Mater Trans JIM, 1995, 36: 228–239

    Article  CAS  Google Scholar 

  87. Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy, 2007, 32: 1121–1140

    Article  CAS  Google Scholar 

  88. Annemieke W C, van den Berg, Carlos O A. Materials for hydrogen storage: Current research trends and perspectives. Chem Comm, 2008, 6: 668–681

    Google Scholar 

  89. Reilly J J, Wiswall R H. Reaction hydrogen with alloys magnesium and nickel and formation of Mg2NiH4. Inorg Chem, 1968, 7: 2254

    Article  CAS  Google Scholar 

  90. Zaluska A, Zaluski L, Strom-Olsen J O. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. J Alloys Comp, 1999, 289: 197–206

    Article  CAS  Google Scholar 

  91. Janot R, Aymard L, Rougier A, et al. Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating. J Mater Res, 2003, 18: 1749–1752

    Article  CAS  Google Scholar 

  92. Chen X J, Xia T D, Liu X L, et al. Mechanism of combustion synthesis of Mg2Ni. J Alloys Comp, 2006, 426: 123–130

    Article  CAS  Google Scholar 

  93. Kodera Y, Yamasaki N, Yamamoto T, et al. Hydrogen storage Mg2Ni alloy produced by induction field activated combustion synthesis. J Alloys Comp, 2007, 446: 138–141

    Article  CAS  Google Scholar 

  94. Szajek A, Jurczyk M, Okonska I, et al. Electrochemical and electronic properties of nanocrystalline Mg-based hydrogen storage materials. J Alloys Comp, 2007, 436: 345–350

    Article  CAS  Google Scholar 

  95. Tanaka K, Kanda Y, Furuhashi M, et al. Improvement of hydrogen storage properties of melt-spun Mg-Ni-RE alloys by nanocrystallization. J Alloys Comp, 1999, 293: 521–525

    Article  Google Scholar 

  96. Spassov T, Rangelova V, Neykov N. Nanocrystallization and hydrogen storage in rapidly solidified Mg-Ni-RE alloys. J Alloys Comp, 2002, 334: 219–223

    Article  CAS  Google Scholar 

  97. Gebert A, Khorkounov B, Wolff U, et al. Stability of rapidly quenched and hydrogenated Mg-Ni-Y and Mg-Cu-Y alloys in extreme alkaline medium. J Alloys Comp, 2006, 419: 319–327

    Article  CAS  Google Scholar 

  98. Huang L J, Liang G Y, Sun Z B, et al. Nanocrystallization and hydriding properties of amorphous melt-spun Mg65Cu25Nd10 alloy. J Alloys Comp, 2007, 432: 172–176

    Article  CAS  Google Scholar 

  99. Lu K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater Sci Eng R-Reports, 1996, 16: 161–221

    Article  Google Scholar 

  100. Yao X, Lu G Q, Li L, et al. Multi-component catalysts enhanced hydrogen storage in novel magnesium-based nanocomposites. Australian Patent, 2007903489, 2007

  101. Mao J F, Wu Z, Chen T J, et al. Improved hydrogen storage of LiBH4 catalyzed magnesium. J Phys Chem C, 2007, 111: 12495–12498

    Article  CAS  Google Scholar 

  102. Chen P, Xiong Z T, Wu G T, et al. Metal-N-H systems for the hydrogen storage. Scr Mater, 2007, 56: 817–822

    Article  CAS  Google Scholar 

  103. Imamura H, Tabata S, Shigetomi N, et al. Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. J Alloys Comp, 2002, 330: 579–583

    Article  Google Scholar 

  104. Zuttel A, Wenger P, Rentsch S, et al. LiBH4 a new hydrogen storage material. J Power Sources, 2003, 118: 1–7

    Article  CAS  Google Scholar 

  105. Alapati S V, Johnson J K, Sholl D S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J Phys Chem B, 2006, 110: 8769–8776

    Article  PubMed  CAS  Google Scholar 

  106. Ikeda T, Mikami Y, Haruki T. Mg-promoted LiH-LiNH2 hydrogen storage system synthesized by using the mechanochemical method. J Phys Chem C, 2007, 111: 8389–8396

    Article  CAS  Google Scholar 

  107. Mayo M J, Suresh A, Porter W D. Thermodynamics for nanosystems: Grain and particle size dependent phase diagrams. Rev Adv Mater Sci, 2003, 5: 100–109

    CAS  Google Scholar 

  108. Alba-Simionesco C, Coasne B, Dosseh G, et al. Effects of confinement on freezing and melting. J Phys: Cond Matt, 2006, 18: R15–R68

    Article  CAS  Google Scholar 

  109. Santiso E E, George A M, Turner C H, et al. Adsorption and catalysis: The effect of confinement on chemical reactions. Appl Surf Sci, 2005, 252: 766–777

    Article  CAS  Google Scholar 

  110. Wagemans R W P, van Lenthe J H, de Jongh P E, et al. Hydrogen storage in magnesium clusters: Quantum chemical study. J Am Chem Soc, 2005, 127: 16675–16680

    Article  PubMed  CAS  Google Scholar 

  111. Liang J J, Kung W C P. Confinement of Mg-MgH2 systems into carbon nanotubes changes hydrogen sorption energetics. J Phys Chem B, 3005, 109: 17837–17841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangDong Yao.

About this article

Cite this article

Yao, X., Lu, G. Magnesium-based materials for hydrogen storage: Recent advances and future perspectives. Chin. Sci. Bull. 53, 2421–2431 (2008). https://doi.org/10.1007/s11434-008-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0325-2

Keywords

Navigation