Skip to main content
Log in

Assessment of Experimental Data and Thermodynamic Modeling in the Zr-Fe-O System

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The thermodynamic parameters of the ZrO2-FeO-Fe2O3 system were assessed based on experimental data for the ZrO-FeO and ZrO2-Fe3O4 systems for the first time. The solubility of FeO and Fe2O3 in the ZrO2-based solid solutions and the solubility of ZrO2 in the Fe2O3 and Fe3O4 phases were taken into account and described by compound energy formalism. A partially ionic liquid model was used to describe the liquid phase. The isothermal section and liquidus surface of the ZrO2-FeO-Fe2O3 system were calculated. Data on binary systems were combined with the description of the ZrO2-FeO-Fe2O3 system. Phase diagrams were calculated using a thermodynamic description based on advanced models. An equilibrium between the metallic liquid and solid ZrO2 was calculated and compared with experimental data. Substantial differences between the calculations and the results of experiments were found, as in the calculations of previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.V. Bechta, E.V. Krushilov, V.I. Almjashev, S.A. Vitol, L.P. Mezentsev, Y.B. Petrov, D.B. Lopuch, V.B. Khabensky, M. Barrachin, S. Hellmann, K. Froment, M. Fischer, W. Tromm, D. Bottomley, F. Defoort and V.V. Gusarov: J. Nucl. Mater., 2006, vol. 348, pp. 114-21.

    Article  Google Scholar 

  2. V. Raghavan: Phase Diagrams of ternary Iron alloys, 1989, vol. 5, pp. 374-9.

    Google Scholar 

  3. H. Biermann, U. Martin, A. Aneziris, A. Kolbe, A. Müller, W. Schärfl and M. Herrman: Adv. Eng. Mat., 2009, vol. 11, pp. 1000-6.

    Google Scholar 

  4. W.A. Fischer and A. Hoffmann: Arch. Eisenhuttenwes, 1957, vol. 28, pp. 739-43.

    Google Scholar 

  5. S.V. Beshta, E.V. Krushilov, V.I. Almjashev, S.A. Vitol, L.P. Mezentsev, Y.B. Petrov, D.B. Lopukh, V.B. Khabenskii, M. Barrachin, S. Hellmann and V.V. Gusarov: Rus. J. Inorg. Chem., 2006, vol. 51, pp. 325-31.

    Article  Google Scholar 

  6. T.S. Jones, S. Kimura and A. Muan: J. Amer. Ceram. Soc., 1967, vol. 50, pp. 137-42.

    Article  Google Scholar 

  7. R.H.G.A. Kiminami: Ceramica, 1987, vol. 33(213), pp. 207–09.

    Google Scholar 

  8. R.H.G.A. Kiminami: Ceramica, 1988, vol. 34(213), pp. 121–23.

    Google Scholar 

  9. T. Katsura, M. Wakihara, S.I. Hara and T. Sugihara: J. Solid State Chem., 1975, vol. 13, pp. 107-13.

    Article  Google Scholar 

  10. Y.B. Petrov, Y.P. Udalov, J. Slovak and Y.G. Morozov: Glass Phys. Chem., 2002, vol. 28, pp. 139-46.

    Article  Google Scholar 

  11. R.J. Fruehan: Metall. Trans., 1974, vol. 5, pp. 345–47.

    Article  Google Scholar 

  12. D. Janke and W.A. Fischer: Arch. Eisenhuttenwes, 1976, vol. 47, pp. 195-8.

    Google Scholar 

  13. W. Huang: CALPHAD, 2004, vol. 28, pp. 153-7.

    Article  Google Scholar 

  14. P.-Y. Chevalier and E. Fischer: Unpublished Research, 2003, cited by Landolt-Bernstein, Thermodynamic Properties of Inorganic Materials compiled by SGTE, Group IV (Physical Chemistry), Binary systems—subvolume B, Binary systems from Cs-K to Mg-Zr, Springer, Berlin, 2005.

  15. L. Kjellquist, M. Selleby and B. Sundman: CALPHAD, 2008, vol. 32, pp. 577-92.

    Article  Google Scholar 

  16. C. Wang: unpublished research, 2006.

  17. C. Wang, M. Zinkevich and F. Aldinger: J. Am. Ceram. Soc., 2006, vol. 89, pp. 3751-8.

    Article  Google Scholar 

  18. I.-H. Jung, S.A. Decterov and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  Google Scholar 

  19. M. Hillert and M. Selleby: Scand. J. Metall., 1990, vol. 19, pp. 23-5.

    Google Scholar 

  20. H.L. Lukas, S.G. Fries and B. Sundman: Computational thermodynamics. The CALPHAD method, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for its financial support of the Collaborative Research Center Trip-Matrix Composites (SFB799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Fabrichnaya.

Additional information

Manuscript submitted August 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabrichnaya, O., Pavlyuchkov, D. Assessment of Experimental Data and Thermodynamic Modeling in the Zr-Fe-O System. Metall Mater Trans A 47, 152–159 (2016). https://doi.org/10.1007/s11661-015-2805-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2805-8

Keywords

Navigation