Skip to main content
Log in

Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The interaction of hydrogen with Al n Rh2 + (n = 10–13) clusters is studied by mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Comparing the IRMPD spectra with predictions obtained using density functional theory calculations allows for the identification of the hydrogen binding geometry. For n = 10 and 11, a single H2 molecule binds dissociatively, whereas for n = 12 and 13, it adsorbs molecularly. Upon adsorption of a second H2 to Al12Rh2 +, both hydrogen molecules dissociate. Theoretical calculations suggest that the molecular adsorption for n = 12 and 13 is not due to kinetic impediment of the hydrogenation reaction by an activation barrier, but due to a higher binding energy of the molecularly adsorbed hydrogen–cluster complex. Inspection of the highest occupied molecular orbitals shows that the hydrogen molecule initially forms a strongly bound Kubas complex with the Al11–13Rh2 + clusters, whereas it only binds weakly with Al10Rh2 +.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dawson VP, Bowles MD (2004) Taming Liquid Hydrogen: The Centaur Upper Stage Rocket, 1958–2002. Diane Publishing Co

  2. Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617. https://doi.org/10.1016/j.ijhydene.2013.07.058

    Article  CAS  Google Scholar 

  3. Orimo S-I, Nakamori Y, Eliseo JR et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132. https://doi.org/10.1021/cr0501846

    Article  CAS  Google Scholar 

  4. Ley MB, Jepsen LH, Lee Y et al (2014) Complex hydrides for hydrogen storage—new perspectives. Mater Today 17:122–128. https://doi.org/10.1016/j.mattod.2014.02.013

    Article  CAS  Google Scholar 

  5. Chaudhuri S, Graetz J, Ignatov A et al (2006) Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach. J Am Chem Soc 128:11404–11415. https://doi.org/10.1021/ja060437s

    Article  CAS  Google Scholar 

  6. Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP (2008) Sodium alanate nanoparticles - linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765. https://doi.org/10.1021/ja710667v

    Article  Google Scholar 

  7. Zaera F (2013) Nanostructured materials for applications in heterogeneous catalysis. Chem Soc Rev 42:2746–2762. https://doi.org/10.1039/C2CS35261C

    Article  CAS  Google Scholar 

  8. Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2:206–211. https://doi.org/10.1021/jz1015372

    Article  CAS  Google Scholar 

  9. Tyo EC, Vajda S (2015) Catalysis by clusters with precise numbers of atoms. Nat Nanotechnol 10:577–588. https://doi.org/10.1038/nnano.2015.140

    Article  CAS  Google Scholar 

  10. Janssens E, Le HT, Lievens P (2015) Adsorption of propene on neutral gold clusters in the gas phase. Chem-A Eur J 21:15256–15262. https://doi.org/10.1002/chem.201500523

    Article  CAS  Google Scholar 

  11. Lang SM, Bernhardt TM (2012) Gas phase metal cluster model systems for heterogeneous catalysis. Phys Chem Chem Phys 14:9255–9269. https://doi.org/10.1039/c2cp40660h

    Article  CAS  Google Scholar 

  12. Schwarz H (2015) Doping effects in cluster-mediated bond activation. Angew Chem Int Ed 54:10090–10100. https://doi.org/10.1002/anie.201500649

    Article  CAS  Google Scholar 

  13. Sanchez A, Abbet S, Heiz U, et al (1999) When Gold Is Not Noble: Nanoscale Gold Catalysts. J Phys Chem A 103:9573–9578. https://doi.org/10.1021/jp9935992

    Article  CAS  Google Scholar 

  14. Ferrari P, Molina LM, Kaydashev VE et al (2016) Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification. Angew Chem Int Ed 128:11225–11229. https://doi.org/10.1002/anie.201604269

    Article  Google Scholar 

  15. Kiohara VO, Carvalho EFV, Paschoal CWA et al (2013) DFT and CCSD (T) electronic properties and structures of aluminum clusters: Al nx (n = 1–9, x = 0, ± 1). Chem Phys Lett 568–569:42–48. https://doi.org/10.1016/j.cplett.2013.03.005

    Article  Google Scholar 

  16. Upton TH, Cox DM, Kaldor A (1987) Activation and chemisorption of hydrogen on aluminum clusters. In: Jena P, Rao BK, Khanna SN (eds) Physics and chemistry of small clusters. Springer, New York, pp 755–768. https://doi.org/10.1007/978-1-4757-0357-3_100

    Chapter  Google Scholar 

  17. Pino I, Kroes GJ, Van Hemert MC (2010) Hydrogen dissociation on small aluminum clusters. J Chem Phys 133:184304. https://doi.org/10.1063/1.3502493

    Article  CAS  Google Scholar 

  18. Zhang F, Wang Y, Chou MY (2012) Hydrogen interaction with the Al surface promoted by subsurface alloying with transition metals. J Phys Chem C 116:18663–18668. https://doi.org/10.1021/jp306377j

    Article  CAS  Google Scholar 

  19. Chopra IS, Chaudhuri S, Veyan JF, Chabal YJ (2011) Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. Nat Mater 10:986–986. https://doi.org/10.1038/nmat3174

    Article  CAS  Google Scholar 

  20. Menezes WJC, Knickelbein MB (1991) Bimetallic clusters of cobalt and aluminum: ionization potentials versus reactivity, and the importance of geometric structure. Chem Phys Lett 183:357–362. https://doi.org/10.1016/0009-2614(91)90393-N

    Article  CAS  Google Scholar 

  21. Nonose S, Sone Y, Onodera K et al (1989) Reactivity study of alloy clusters made of aluminum and some transition metals with hydrogen. Chem Phys Lett 164:427–432. https://doi.org/10.1016/0009-2614(89)85232-7

    Article  CAS  Google Scholar 

  22. Vanbuel J, Fernandez EM, Ferrari P et al (2017) Hydrogen chemisorption on singly vanadium-doped aluminum clusters. Chem-A Eur J 23:1–7. https://doi.org/10.1002/chem.201704361

    Article  Google Scholar 

  23. Charkin OP, Mikhailin AA, Klimenko NM (2013) Theoretical modeling of elementary reactions of dissociative addition of an H2 molecule to aluminum clusters MAl12 doped with early 3d and 4d transition metal atoms. Russ J Inorg Chem 58:1479–1488. https://doi.org/10.1134/S0036023613120073

    Article  CAS  Google Scholar 

  24. Pramann A, Nakajima A, Kaya K (2001) Photoelectron spectroscopy of bimetallic aluminum cobalt cluster anions: comparison of electronic structure and hydrogen chemisorption rates. J Chem Phys 115:5404–5410. https://doi.org/10.1063/1.1394944

    Article  CAS  Google Scholar 

  25. Niu J, Rao BK, Jena P (1992) Binding of hydrogen molecules by a transition-metal ion. Phys Rev B 68:2277–2281. https://doi.org/10.1103/PhysRevLett.68.2277

    CAS  Google Scholar 

  26. Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205. https://doi.org/10.1021/cr050197j

    Article  CAS  Google Scholar 

  27. Truong NX, Haertelt M, Jaeger BKAA. et al (2016) Characterization of neutral boron-silicon clusters using infrared spectroscopy: the case of Si6B. Int J Mass Spectrom 395:1–6. https://doi.org/10.1016/j.ijms.2015.11.006

    Article  CAS  Google Scholar 

  28. Schöllkopf W, Gewinner S, Erlebach W et al (2014) The new IR FEL facility at the Fritz-Haber-Institut in Berlin. In: Proceedings of FEL 2014, Basel, WEB04, pp 629–634

  29. Schöllkopf W, Gewinner S, Junkes H et al (2015) The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. Proc SPIE 9512:95121L. https://doi.org/10.1117/12.2182284

    Article  Google Scholar 

  30. Nesbitt DJ, Field RW (1996) Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J Phys Chem 100:12735–12756. https://doi.org/10.1021/jp960698w

    Article  CAS  Google Scholar 

  31. Herzberg G (1969) Dissociation energy and ionization potential of molecular hydrogen. Phys Rev Lett 23:1081–1083. https://doi.org/10.1103/PhysRevLett.23.1081

    Article  CAS  Google Scholar 

  32. Kawamura H, Kumar V, Sun Q, Kawazoe Y (2001) Magic behavior and bonding nature in hydrogenated aluminum clusters. Mater Chem Phys 115:612–617. https://doi.org/10.1016/j.matchemphys.2009.01.025

    Google Scholar 

  33. Wang H, Wang Y, Lv J et al (2016) CALYPSO structure prediction method and its wide application. Comput Mater Sci 112:406–415. https://doi.org/10.1016/j.commatsci.2015.09.037

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  35. Petrie S, Stranger R (2004) DFT and metal–metal bonding: a dys-functional treatment for multiply charged complexes? Inorg Chem 43:2597–2610. https://doi.org/10.1021/ic034525e

    Article  CAS  Google Scholar 

  36. Liu Y, Zhang J, Li J et al (2016) Hydrogen, oxygen and nitrogen adsorption on Rh n–1X (n = 2–5, X = 3d, 4d atoms) clusters: a DFT study. Comput Theor Chem 1085:56–65. https://doi.org/10.1016/j.comptc.2016.04.008

    Article  CAS  Google Scholar 

  37. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc

    Article  CAS  Google Scholar 

  38. Igel-Mann G, Stoll H, Preuss H (1988) Pseudopotentials for main group elements (IIIa through VIIa). Mol Phys 65:1321–1328. https://doi.org/10.1080/00268978800101811

    Article  CAS  Google Scholar 

  39. Schäfer A, Huber C, Ahlrichs R et al (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829/7. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  40. Shayeghi A, Johnston RL, Rayner DM et al (2015) The nature of bonding between argon and mixed gold–silver trimers. Angew Chem 54:10675–10680. https://doi.org/10.1002/anie.201503845

    Article  CAS  Google Scholar 

  41. Gehrke R, Gruene P, Fielicke A et al (2013) Nature of Ar bonding to small Con + clusters and its effect on the structure determination by far-infrared absorption spectroscopy. J Chem Phys 130:34306. https://doi.org/10.1063/1.3058637

    Article  Google Scholar 

  42. Janssens E, Gruene P, Meijer G et al (2007) Argon physisorption as structural probe for endohedrally doped silicon clusters. Phys Rev Lett 99:1–4. https://doi.org/10.1103/PhysRevLett.99.063401

    Article  Google Scholar 

  43. Lang SM, Claes P, Neukermans S, Janssens E (2011) Cage structure formation of singly doped aluminum cluster cations Al n TM+ (TM = Ti, V, Cr). J Am Soc Mass Spectrom 22:1508–1514. https://doi.org/10.1007/s13361-011-0181-1

    Article  CAS  Google Scholar 

  44. Fernández EM, Vega A, Balbás LC (2013) Theoretical study of Al n V+ clusters and their interaction with Ar. J Chem Phys 139:214305. https://doi.org/10.1063/1.4834595

    Article  Google Scholar 

  45. Knickelbein MB (1999) Reactions of transition metal clusters with small molecules. Annu Rev Phys Chem 50:79–115. https://doi.org/10.1146/annurev.physchem.50.1.79

    Article  CAS  Google Scholar 

  46. Swart I, Gruene P, Fielicke A et al (2008) Molecular adsorption of H2 on small cationic nickel clusters. Phys Chem Chem Phys 10:5743–5745. https://doi.org/10.1039/b807313a

    Article  CAS  Google Scholar 

  47. Swart I, de Groot FMF, Weckhuysen BM et al (2008) H2 adsorption on 3d transition metal clusters: a combined infrared spectroscopy and density functional study. J Phys Chem A 112:1139–1149. https://doi.org/10.1021/jp076702t

    Article  CAS  Google Scholar 

  48. Huber K-P (2013) Molecular spectra and molecular structure: IV. Constants of diatomic molecules. Springer, New York. https://doi.org/10.1007/978-1-4757-0961-2

    Google Scholar 

  49. Burkart S, Blessing N, Gantefor G (1999) Indication of a size-dependent transition from molecular to dissociative chemisorption on clusters. Phys Rev B 60:15639–15642. https://doi.org/10.1103/PhysRevB.60.15639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the KU Leuven Research Council (GOA/14/007). J.V. would like to thank the FWO—Research Foundation Flanders for a PhD fellowship. P.F. acknowledges CONICyT for a Becas Chile scholarship. A.F. thanks the Deutsche Forschungsgemeinschaft for a Heisenberg grant (FI 893/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Janssens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanbuel, J., Jia, My., Ferrari, P. et al. Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters. Top Catal 61, 62–70 (2018). https://doi.org/10.1007/s11244-017-0878-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0878-x

Keywords

Navigation