Skip to main content
Log in

Production of porous ceramic materials using nanodisperse SiC powder

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Porous ceramic materials were produced by hot pressing of a nanocrystalline (19 nm) silicon carbide powder synthesized by a hybrid method that combined the sol–gel processing of a finely divided and chemically reactive SiO2–C system and the carbothermic synthesis at moderate (1400°C) temperature in a vacuum. It was studied how such characteristics as density, porosity, sizes of crystallites and aggregates of SiC particles, specific surface area, and compressive strength depend on pressing temperature (1400, 1500, 1600, and 1700°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Matovic, F. Zivic, S. Mitrovic, et al., Mater. Lett. 164, 68 (2016).

    Article  CAS  Google Scholar 

  2. B. Matovic, D. Bucevac, V. Urbanovic, et al., J. Eur. Ceram. Soc. 36, 3005 (2016). doi 10.1016/j.jeurceramsoc. 2015.10.031

    Article  CAS  Google Scholar 

  3. B. Lanfant, Y. Leconte, G. Bonnefont, et al., J. Eur. Ceram. Soc. 35, 3369 (2015). doi 10.1016/j.jeurceramsoc. 2015.05.014

    Article  CAS  Google Scholar 

  4. F. Lomello, G. Bonnefont, Y. Leconte, et al., J. Eur. Ceram. Soc. 32, 633 (2012). doi 10.1016/j.jeurceramsoc. 2011.10.006

    Article  CAS  Google Scholar 

  5. M. Hotta, H. Kita, and J. Hojo, J. Ceram. Soc. Jpn. 119, 129 (2011). doi 10.2109/jcersj2.119.129

    Article  CAS  Google Scholar 

  6. V. M. Candelario, R. Moreno, F. Guiberteau, and A. L. Ortiz, J. Eur. Ceram. Soc. 36, 3083 (2016). doi 10.1016/j.jeurceramsoc.2016.05.004

    Article  CAS  Google Scholar 

  7. V. M. Candelario, R. Moreno, Z. Shen, and A. L. Ortiz, J. Eur. Ceram. Soc. 35, 3363 (2015). doi 10.1016/j.jeurceramsoc.2015.05.015

    Article  CAS  Google Scholar 

  8. A. L. Ortiz, E. Ciudad, T. N. Baymukhametov, et al., Scr. Mater. 77, 9 (2014). doi 10.1016/j.scriptamat. 2014.01.002

    Article  CAS  Google Scholar 

  9. O. Borrero-López, A. L. Ortiz, E. Ciudad, et al., Ceram. Int. 38, 5979 (2012). doi 10.1016/j.jeurceramsoc. 2011.10.052

    Article  Google Scholar 

  10. A. L. Ortiz, O. Borrero-López, M. Z. Quadir, and F. Guiberteau, J. Eur. Ceram. Soc. 32, 965 (2012).

    Article  CAS  Google Scholar 

  11. N. Z. Khalil, S. K. Vajpai, M. Ota, and K. Ameyama, Mater. Trans. 56, 1827 (2015). doi 10.2320/matertrans. Y-M2015823

    Article  Google Scholar 

  12. H. Cong, C. Wang, X. Gao, et al., J. Eng. Thermophys. 25, 301 (2016). doi 10.1134/S1810232816030012

    Article  CAS  Google Scholar 

  13. A. Fernández, G. M. Arzac, U. F. Vogt, et al., Appl. Catal. 180, 336 (2016). doi 10.1016/j.apcatb.2015.06.040

    Article  Google Scholar 

  14. J. T. Jang, K. J. Yoon, and G. Y. Han, J. Sol. Energy Eng. 136, 031008 (2014). doi 10.1115/1.4026677

    Article  Google Scholar 

  15. R. Dhiman, E. Johnson, E. M. Skou, et al., J. Mater. Chem. A 1, 6030 (2013). doi 10.1039/c3ta10238f

    Article  CAS  Google Scholar 

  16. N. Keller, R. Vieira, J.-M. Nhut, et al., J. Braz. Chem. Soc. 16, 202 (2005).

    CAS  Google Scholar 

  17. P. Marin, S. Ordonez, and F. V. Diez, J. Chem. Technol. Biotechnol. 87, 360 (2012). doi 10.1002/jctb.2726

    Article  CAS  Google Scholar 

  18. A. Gómez-Martin, M. P. Orihuela, J. A. Becerra, et al., Mater. Des. 107, 450 (2016). doi 10.1016/j.matdes.2016.06.060

    Article  Google Scholar 

  19. H.-J. Choi, J.-U. Kim, H.-S. Kim, et al., Ceram. Int. 41, 10030 (2015). doi 10.1016/j.ceramint.2015.04.090

    Article  CAS  Google Scholar 

  20. S. Bao, M. Syvertsen, A. Kvithyld, et al., Trans. Nonferrous Met. Soc. China 24, 3922 (2014). doi 10.1016/S1003-6326(14)63552-4

    Article  CAS  Google Scholar 

  21. S. Schaafhausen, E. Yazhenskikh, S. Heidenreich, and M. Mueller, J. Eur. Ceram. Soc. 34, 575 (2014). doi 10.1016/j.jeurceramsoc.2013.10.011

    Article  CAS  Google Scholar 

  22. M. Blaesing, S. Schaafhausen, and M. Mueller, J. Eur. Ceram. Soc. 34, 1041 (2014). doi 10.1016/j.jeurceramsoc. 2013.10.035

    Article  CAS  Google Scholar 

  23. S. M. Manocha, H. Patel, and L. M. Manocha, J. Mater. Eng. Perform. 22, 396 (2013). doi 10.1007/s11665-012-0286-0

    Article  CAS  Google Scholar 

  24. J. Locs, L. Berzina-Cimdina, A. Zhurinsh, and D. Loca, J. Eur. Ceram. Soc. 31, 183 (2011). doi 10.1016/j.jeurceramsoc.2010.08.009

    Article  CAS  Google Scholar 

  25. O. Gryshkov, N. I. Klyui, V. P. Temchenko, et al., Mater. Sci. Eng. C: Mater. Biol. Appl. 68, 143 (2016). doi 10.1016/j.msec.2016.05.113

    Article  CAS  Google Scholar 

  26. A. Gómez-Martín, M. P. Orihuela, J. A. Becerra, et al., Mater. Des. 107, 450 (2016). doi 10.1016/j.matdes. 2016.06.060

    Article  Google Scholar 

  27. A. Shimamura, M. Fukushima, M. Hotta, et al., J. Ceram. Soc. Jpn. 123, 1106 (2015).

    Article  CAS  Google Scholar 

  28. Y. Kong, X. D. Shen, S. Cui, and Y. Zhong, Chin. J. Inorg. Chem. 30, 2825 (2014).

    CAS  Google Scholar 

  29. H. S. Zhao, Z. G. Liu, Y. Yang, et al., Trans. Nonferrous Met. Soc. China 21, 1329 (2011). doi 10.1016/S1003-6326(11)60861-3

    Article  CAS  Google Scholar 

  30. H. Zhang, P. D’Angelo Nunes, M. Wilhelm, and K. Rezwan, J. Eur. Ceram. Soc. 36, 51 (2016). doi 10.1016/j.jeurceramsoc.2015.09.018

    Article  Google Scholar 

  31. T. Nardin, J. Cambedouzou, J. Ravaux, et al., RSC Adv. 5, 86156 (2015). doi 10.1039/c5ra17376k

    Article  CAS  Google Scholar 

  32. E. P. Simonenko, N. P. Simonenko, M. A. Zharkov, et al., J. Mater. Sci. 50, 733 (2015). doi 10.1007/s10853- 014-8633-1

    Article  CAS  Google Scholar 

  33. I. D. Simonov-Emel’yanov, N. L. Shembel’, E. E. Nikishina, et al., Inorg. Mater. 51, 1066 (2015). doi 10.1134/S0020168515100143

    Article  Google Scholar 

  34. K. H. Zuo, Y. P. Zeng, and D. L. Jiang, Adv. Eng. Mater. 15, 491 (2013). doi 10.1002/adem.201200278

    Article  CAS  Google Scholar 

  35. E. P. Simonenko, N. P. Simonenko, A. V. Derbenev, et al., Russ. J. Inorg. Chem. 58, 1143 (2013). doi 10.1134/S0036023613100215

    Article  CAS  Google Scholar 

  36. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Kompoz. Nanostrukt. 6 (4), 198 (2014).

    CAS  Google Scholar 

  37. V. Raman, O. P. Bahl, and U. Dhawan, J. Mater. Sci. 30, 2686 (1995).

    Article  CAS  Google Scholar 

  38. M. Narisawa, Y. Okabe, M. Iguchi, and K. Okamura, J. Sol–Gel Sci. Technol. 12, 143 (1998).

    Article  CAS  Google Scholar 

  39. M. Narisawa, K. Yamane, Y. Okabe, and K. Okamura, J. Mater. Res. 14, 4587 (1999).

    Article  CAS  Google Scholar 

  40. A. Najafi, F. Golestani-Fard, H. R. Rezaie, and N. Ehsani, J. Alloys Compd. 505, 692 (2010).

    Article  CAS  Google Scholar 

  41. A. Najafi, F. Golestani Fard, H. R. Rezaie, and N. Ehsani, Powder Technol. 219, 202 (2012).

    Article  CAS  Google Scholar 

  42. A. Najafi, F. Golestani-Fard, H. R. Rezaie, and N. Ehsani, J. Sol–Gel Sci. Technol. 59, 205 (2011).

    Article  CAS  Google Scholar 

  43. E. P. Simonenko, N. P. Simonenko, G. P. Kopitsa, et al., Russ. J. Inorg. Chem. 61, 1347 (2016). doi 10.1134/S0036023616110206

    Article  CAS  Google Scholar 

  44. E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 56, 1681 (2011). doi 10.1134/S0036023611110258

    Article  CAS  Google Scholar 

  45. V. G. Sevastyanov, E. P. Simonenko, N. A. Ignatov, et al., Russ. J. Inorg. Chem. 56, 661 (2011). doi 10.1134/S0036023611050214

    Article  CAS  Google Scholar 

  46. V. G. Sevast’yanov, E. P. Simonenko, N. A. Ignatov, et al., Inorg. Mater. 46, 495 (2010). doi 10.1134/S0020168510050109

    Article  Google Scholar 

  47. E. P. Simonenko, N. P. Simonenko, Yu. S. Ezhov, et al., Phys. Atom. Nuclei 78, 1357 (2015). doi 10.1134/S106377881512011X

    Article  CAS  Google Scholar 

  48. V. G. Sevastyanov, Yu. S. Ezhov, E. P. Simonenko, and N. T. Kuznetsov, Mater. Sci. Forum 457–460, 59 (2004). doi 10.4028/www.scientific.net/MSF.457-460.59

    Article  Google Scholar 

  49. R. G. Pavelko, V. G. Sevast’yanov, Yu. S. Ezhov, and N. T. Kuznetsov, Inorg. Mater. 43, 700 (2007). doi 10.1134/S0020168507070059

    Article  CAS  Google Scholar 

  50. E. P. Simonenko, A. V. Derbenev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 60, 1444 (2015). doi 10.1134/S0036023615120220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Additional information

Original Russian Text © E.P. Simonenko, A.V. Derbenev, N.P. Simonenko, E.K. Papynov, V.Yu. Maiorov, E.A. Gridasova, V.A. Avramenko, V.G. Sevastyanov, N.T. Kuznetsov, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 7, pp. 879–886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Derbenev, A.V., Simonenko, N.P. et al. Production of porous ceramic materials using nanodisperse SiC powder. Russ. J. Inorg. Chem. 62, 863–869 (2017). https://doi.org/10.1134/S0036023617070221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617070221

Navigation