Skip to main content

Advertisement

Log in

Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-porous SiC ceramics (density 0.50–0.58 g/cm3, porosity 82–84 %, compressive stress at break 3.7–6.3 MPa) was prepared by means of polymeric technology and natural raw material (diatomite powder, “Biosilica” grade) at the temperature of carbothermal synthesis (1400 °C). It was shown that the main phase was silicon carbide with a small (<5 %) impurity of FeSi; SiC crystallite size was found to be 23–30 nm. Using scanning electron microscopy, X-ray computerized microtomography, and dynamic light scattering in aqueous suspensions of powders obtained at ultrasonic exposure, it was shown that SiC nanoparticles in the samples were aggregated to a great extent. The degree of aggregation strongly depends on SiO2-C ratio in the starting samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bansal NP (ed) (2005) Handbook of ceramic composites. Kluwer Academic Publishers, Norwell, p 554

  2. Sevast’yanov VG, Simonenko EP, Gordeev AN, Simonenko NP, Kolesnikov AF, Papynov EK, Shichalin OO, Avramenko VA, Kuznetsov NT (2013) Production of ultrahigh temperature composite materials HfB2–SiC and the study of their behavior under the action of a dissociated air flow. Russ J Inorg Chem 58(11):1269–1276. doi:10.1134/S003602361311017X

    Article  Google Scholar 

  3. Simonenko EP, Sevast’yanov DV, Simonenko NP, Sevast’yanov VG, Kuznetsov NT (2013) Promising ultra-high-temperature ceramic materials for aerospace applications. Russ J Inorg Chem 58(14):1669–1693. doi:10.1134/S0036023613140039

    Article  Google Scholar 

  4. Kablov EN, Grashchenkov DV, Isaeva NV, Solntsev SS, Sevast’yanov VG (2012) Glass and ceramics based high-temperature composite materials for use in aviation technology. Glass Ceram 69(3–4):109–112. doi:10.1007/s10717-012-9425-1

    Article  Google Scholar 

  5. Kablov EN, Grashchenkov DV, Isaeva NV, Solntsev SS (2011) Prospective high-temperature ceramic composite materials. Russ J Gener Chem 81(5):986–991. doi:10.1134/S107036321105029X

    Article  Google Scholar 

  6. Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39(19):5804–5887. doi:10.1023/B:JMSC.0000041686.21788.77

    Google Scholar 

  7. Silvestroni L, Sciti D, Melandri C, Guicciardi S (2010) Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions. J Eur Ceram Soc 30(11):2155–2164. doi:10.1016/j.jeurceramsoc.2009.11.012

    Article  Google Scholar 

  8. Wang J, Duan X, Yang Z, Jia D, Zhou Y (2014) Ablation mechanism and properties of SiCf/SiBCN ceramic composites under an oxyacetylene torch environment. Corros Sci 82:101–107. doi:10.1016/j.corsci.2014.01.006

    Article  Google Scholar 

  9. Simonenko EP, Simonenko NP, Sevastyanov VG, Grashchenkov DV, Kuznetsov NT, Kablov EN (2011) Functionally graded composite material SiC/(ZrO2-HfO2-Y2O3) prepared via sol-gel technology. Composit Nanostr 4:52–64

    Google Scholar 

  10. Klaffke D (1989) Fretting wear of ceramics. Tribol Int 22(2):89–101. doi:10.1016/0301-679X(89)90169-2

    Article  Google Scholar 

  11. Krenkel W, Heidenreich B, Renz R (2002) C/C-SiC composites for advanced friction systems. Adv Eng Mater 4(7):427–436

    Article  Google Scholar 

  12. Buttay C, Ouaida R, Morei H, Bergogne D, Raynaud C, Morel F (2013) Thermal stability of silicon carbide power JFETs. EEE Trans Electron Devices 60(12):4191–4198. doi:10.1109/TED.2013.2287714

    Article  Google Scholar 

  13. Chen L-Y, Johnson RW, Neudeck PG, Beheim GM, Spry DJ, Meredith RD, Hunter GW (2012) Packaging technologies for 500 °C SiC electronics and sensors. Mater Sci Forum 717–720:1033–1036. doi:10.4028/www.scientific.net/MSF.717-720.1033

    Article  Google Scholar 

  14. Okamura K, Ise K, Wake M, Osawa Y, Takaki K, Takayama K (2012) Characterization of SiC JFET in novel packaging for 1 MHz operation. Mater Sci Forum 717–720:1029–1032. doi:10.4028/www.scientific.net/MSF.717-720.1029

    Article  Google Scholar 

  15. Stavrinidis A, Konstantinidis G, Kayambaki M, Cayrel F, Alquier D, Gao Z, Zekentes K (2012) Fabrication issues of 4H-SiC Static induction transistors. Mater Sci Forum 717–720:1049–1052. doi:10.4028/www.scientific.net/MSF.717-720.1049

    Article  Google Scholar 

  16. Kim Y, Min K, Shim J, Kim DJ (2012) Formation of porous SiC ceramics via recrystallization. J Eur Ceram Soc 32(13):3611–3615. doi:10.1016/j.jeurceramsoc.2012.04.044

    Article  Google Scholar 

  17. Zhu S, Ding S, Xi H, Wang R (2005) Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater Lett 59(5):595–597. doi:10.1016/j.matlet.2004.11.003

    Article  Google Scholar 

  18. Fukushima M, Zhou Y, Yoshizawa Y (2009) Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3–Y2O3 additives. J Membr Sci 339:78–84. doi:10.1016/j.memsci.2009.04.033

    Article  Google Scholar 

  19. Suwanmethanond V, Goo E, Liu RKT, Johnston G, Sahimi M, Tsotsis TT (2000) Porous silicon carbide sintered substrates for high-temperature membranes. Ind Eng Chem Res 39(9):3264–3271. doi:10.1021/ie0000156

    Article  Google Scholar 

  20. Lin P-K, Tsai D-S (1997) Preparation and Analysis of a Silicon Carbide Composite Membrane. J Am Ceram Soc 80(2):365–372. doi:10.1111/j.1151-2916.1997.tb02839.x

    Article  Google Scholar 

  21. Fukushima M, Zhou Y, Miyazaki H, Yoshizawa Y, Hirao K, Iwamoto Y, Yamazaki S, Nagano T (2006) Microstructural characterization of porous silicon carbide membrane support with and without alumina additive. J Am Ceram Soc 89(5):1523–1529. doi:10.1111/j.1551-2916.2006.00931.x

    Article  Google Scholar 

  22. Iwamoto Y (2007) Precursor-derived ceramic membranes for high-temperature separation of hydrogen. J Ceram Soc Jpn 115(12):947–954

    Article  Google Scholar 

  23. Simonenko EP, Simonenko NP, Derbenev AV, Nikolaev VA, Grashchenkov DV, Sevastyanov VG, Kablov EN, Kuznetsov NT (2013) Synthesis of nanocrystalline silicon carbide using the sol–gel technique. Russ J Inorg Chem 58(10):1143–1151. doi:10.1134/S0036023613100215

    Article  Google Scholar 

  24. Sevastyanov VG, Simonenko EP, Simonenko NP, Grashchenkov DV, Kablov EN, Kuznetsov NT (2013) Synthesis of SiC-whiskers via sol-gel technique in the bulk of SiC composite. The 19th International Conference on Composite Materials, e-Proceedings, Montreal, Canada. 4695–4702

  25. Kablov EN, Kuznetsov NT, Sarkisov PD, Grashchenkov DV, Sevastyanov VG, Orlova LA, Simonenko EP (2009) Protective silicon carbide coating of carbon fibers or nanotubes to prevent oxidation and degradation in air. Pat. RU No. 2350580, 27.03.2009

  26. Kuznetsov NT, Sevast’yanov VG, Simonenko EP, Ignatov NA, Simonenko NP, Ezhov YS (2008) Method for obtaining highly-dispersible refractory carbides for coating and composites based thereon. Pat. RU No. 2333888, 20.09.2008

  27. Sevast’yanov VG, Simonenko EP, Ignatov NA, Ezhov YS, Kuznetsov NT (2010) Low temperature synthesis of TaC through transparent tantalum–carbon containing gel. Inorg Mater 46(5):495–500. doi:10.1134/S0020168510050109

    Article  Google Scholar 

  28. Simonenko EP, Ignatov NA, Simonenko NP, Ezhov YS, Sevastyanov VG, Kuznetsov NT (2011) Synthesis of highly dispersed super refractory tantalum–zirconium carbide Ta4ZrC5 and tantalum–hafnium carbide Ta4HfC5 via sol–gel technology. Russ J Inorg Chem 56(11):1681–1687. doi:10.1134/S0036023611110258

    Article  Google Scholar 

  29. Sevastyanov VG, Simonenko EP, Ignatov NA, Ezhov YS, Simonenko NP, Kuznetsov NT (2011) Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides. Russ J Inorg Chem 56(5):661–672. doi:10.1134/S0036023611050214

    Article  Google Scholar 

  30. Kong Y, Zhong Y, Shen X, Cui S, Yang M, Teng K, Zhang J (2012) Facile synthesis of resorcinol–formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels. J Non-Cryst Solids 358(23):3150–3155. doi:10.1016/j.jnoncrysol.2012.08.029

    Article  Google Scholar 

  31. Kong Y, Zhong Y, Shen X, Gu L, Cui S, Yang M (2013) Synthesis of monolithic mesoporous silicon carbide from resorcinol–formaldehyde/silica composites. Mater Lett 99:108–110. doi:10.1016/j.matlet.2013.02.047

    Article  Google Scholar 

  32. Chen K, Bao Z, Du A, Zhu X, Wu G, Shen J, Zhou B (2012) Synthesis of resorcinol–formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide. Microporous Mesoporous Mater 149(1):16–24. doi:10.1016/j.micromeso.2011.09.008

    Article  Google Scholar 

  33. Simonov-Emel’yanov ID, Shembel NL, Storozhenko PA (2013) Method of producing β-silicon carbide. Pat. RU No. 2472703, 20.01.2013

  34. Simonov-Emel’yanov ID, Shembel NL (2010) Synthesis of carbon materials and refractory carbides with given porosity. Plasticheskie Massy (Rus.) 9:10–18

    Google Scholar 

  35. Simonov-Emel’yanov ID, Shembel NL, Kuklina LA (2001) Method for making porous products of refractory materials. Pat. RU No. 2171732, 10.08.2001

  36. Simonov-Emel’yanov ID, Shembel NL, Afonin MM, Zaitsev VI (2001) Highly porous refractory materials on the basis of transition metal carbides. Konstruktsii iz Kompozitsionnykh Materialov (Rus.) 1:31–37

    Google Scholar 

  37. Shembel NL, Simonov-Emelyanov ID, Kuleznev VN, Afonin MM, Zajtsev VI (1997) Phenolic resin composition for manufacture of metal monocarbide. Pat. RU No. 2087499, 20.08.1997

  38. Saponjic A, Babic B, Devecerski A, Matovic B (2009) Preparation of nanosized non-oxide powders using diatomaceous earth. Sci Sinter 41:151–159

    Article  Google Scholar 

  39. Saponjic A, Matovic B, Babic B, Zagorac J, Poharc-Logar V, Logar M (2010) Cost-effective synthesis of Si3N4-SiC nanocomposite powder. Optoelectron Adv Mat 4(11):1681–1684

    Google Scholar 

  40. Matovic B, Saponjic A, Devecerski A, Miljkovic M (2007) Fabrication of SiC by carbothermal-reduction reactions of diatomaceous eart. J Mater Sci 42:5448–5451. doi:10.1007/s10853-006-0780-6

    Article  Google Scholar 

  41. Bagci C (2011) Microstructural characterization of β-SiC powders synthesized by carbothermally reduction of Turkish diatomite. Sci Res Essays 6(3):542–551

    Google Scholar 

  42. Sugai M, Ito A, Kato S, Nakata S (2000) Spark plasma sintering of SiC synthesized from diatomite and carbon. In Second International Conferenceon on Processing Materials for Properties, San Francisco, CA, United States. 1081–1082

  43. Chen X, Ye Y, Liu S, Zhang A, Xia M, Huang Y, Ding Q (2012) Manufacturing of porous silicon carbide from diatomite. Pat. CN No. 102303867, 04.01.2012

  44. Martin H-P, Adler J (2008) Method for manufacture and applications of structured silicon carbide particles. Pat. DE No.10143685, 24.07.2008

  45. Majewski P (2004) Production of silicon carbide from graphite and mineral raw materials containing silica. Pat. DE No. 10246780, 22.04.2004

  46. Martin H-P (2003) Method for manufacture and applications of structured silicon carbide particles. Pat. WO No. 2003022779, 20.03.2003

  47. Murakami H (2010) Manufacture of fine silicon carbide, fine silicon nitride, silicon, and silicon chloride, and method for fabrication of diatomite container therefor. Pat. JP No. 2010155761, 15.07.2010

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research (Grants No. 12-03-33005-mol_a_ved, 13-03-12206-ofi_m, 14-03-31002-mol_a) and a grant of the President of the Russian Federation MK-1435.2013.3.

The authors are grateful to Scientific Center for New Catalytic Technologies (SCNCT) of the Moscow State University of Fine Chemical Technologies for assistance in determination of surface areas of the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Sevastyanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Zharkov, M.A. et al. Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder. J Mater Sci 50, 733–744 (2015). https://doi.org/10.1007/s10853-014-8633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8633-1

Keywords

Navigation