Skip to main content

Advertisement

Log in

Preparation of porous SiC-ceramics by sol–gel and spark plasma sintering

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A method for the production of porous SiC-ceramics from finely dispersed starting system SiO2–C by means of single-stage carbothermal process involving spark plasma sintering at moderate temperatures (≤1800 °C) is proposed. Synthesis of finely-dispersed SiO2–C system was performed by sol–gel as follows: tetraethoxysilane was hydrolyzed in the presence of polymeric source of carbon (phenolformaldehyde resin) with the subsequent drying and thermal treatment under inert atmosphere at 850 °C. The density of the obtained ceramic samples was found to vary within the range 1.43–1.84 g·cm−3 depending on the experimental conditions (the estimated porosity amounted to 42–55%). Ultimate compression strength was measured to be 94–279 MPa. Thermal behavior of materials in air flow up to 1400 °C, as well as microstructure and volumetric pore distribution (X-ray computerized microtomography), were studied.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bansal NP (2005) Handbook of ceramic composites. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  2. Katoh Y, Dong S, Kohyama A (2012) In: Kohyama A, Singh M, Lin H-T, Katoh Y (Ed) Advances in SiC/SiC ceramic composites: develeopments and applications in energy systems, ceramis transactions. Wiley, Hoboken, pp 77–86

  3. Simonenko EP, Sevast’yanov DV, Simonenko NP, Sevast’yanov VG, Kuznetsov NT (2013) Promising ultra-high-temperature ceramic materials for aerospace applications. Russ J Inorg Chem 58:1669–1693

    Article  Google Scholar 

  4. Sevast’yanov VG, Simonenko EP, Gordeev AN, Simonenko NP, Kolesnikov AF, Papynov EK, Shichalin OO, Avramenko VA, Kuznesov NT (2013) Production of ultrahigh temperature composite materials HfB2-SiC and the study of their behavior under the action of a dissociated air flow. Russ J Inorg Chem 58:1269–1276

    Article  Google Scholar 

  5. Kablov EN, Grashchenkov DV, Isaeva NV, Solntsev SS, Sevast’yanov VG (2012) Glass and ceramics based high-temperature composite materials for use in aviation technology. Glass Ceram 69:109–112

    Article  Google Scholar 

  6. Kablov EN, Grashchenkov DV, Isaeva NV, Solntsev SSt (2011) Perspective high-temperature ceramic composite materials. Russ J Gen Chem 81:986–991

    Article  Google Scholar 

  7. Wenbo H, Shanbao Z, Jihong Z (2014) Single-cycle thermal shock resistance of ZrB2–SiCnp ceramic composites. Ceram Int 40:16665–16669

    Article  Google Scholar 

  8. Sevastyanov VG, Simonenko EP, Gordeev AN, Simonenko NP, Kolesnikov AF, Papynov EK, Shichalin OO, Avramenko VA, Kuznesov NT (2014) HfB2-SiC (45 vol %) ceramic material: manufacture and behavior under long-term exposure to dissociated air jet flow. Russ J Inorg Chem 59:1298–1311

    Article  Google Scholar 

  9. Wang L, Liang J, Fang G (2015) High temperature fracture behavior of ZrB2–SiC–graphite composite in vacuum and air. J Alloys Compd 619:145–150

    Article  Google Scholar 

  10. Zhang X, Liu R, Xiong X, Chen Z (2015) Mechanical properties and ablation behavior of ZrB2–SiC ceramics fabricated by spark plasma sintering. Int J Refract Met Hard Mater 48:120–125

    Article  Google Scholar 

  11. Sevastyanov VG, Simonenko EP, Gordeev AN, Simonenko NP, Kolesnikov AF, Papynov EK, Shichalin OO, Avramenko VA, Kuznesov NT (2014) HfB2-SiC (10–20 vol %) ceramic materials: manufacture and behavior under long-term exposure to dissociated air streams. Russ J Inorg Chem 59:1361–1382

    Article  Google Scholar 

  12. Carney C, Paul A, Venugopal S, Parthasarathy T, Binner J, Katz A, Brown P (2014) Qualitative analysis of hafnium diboride based ultra high temperature ceramics under oxyacetylene torch testing at temperatures above 2100°C. J Eur Ceram Soc 34:1045–1051

    Article  Google Scholar 

  13. Musa C, Orrù R, Sciti D, Silvestroni L, Cao G (2013) Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J Eur Ceram Soc 33:603–614

    Article  Google Scholar 

  14. Wäsche R, Klaffke D, Wötting G (2009) Tribological behaviour of structural Si-based ceramics in fretting tests at room temperature. Tribol Lett 33:211–219

    Article  Google Scholar 

  15. Krenkel W, Heidenreich B, Renz R (2002) C/C-SiC composites for advanced friction systems. Adv Eng Mater 4:427–436

    Article  Google Scholar 

  16. Amanov A, Pyun Y, Kim J, Sasaki S (2014) Enhancement in wear resistance of sintered silicon carbide at various temperatures. Tribol Int 74:28–37

    Article  Google Scholar 

  17. Mukherjee M (2011) Silicon carbide - materials, processing and applications in electronic devices. InTech, Rijeka

    Book  Google Scholar 

  18. Marsi N, Majlis BY, Hamzah AA, Mohd-Yasin F (2014) The mechanical and electrical effects of MEMS capacitive pressure sensor based 3C-SiC for extreme temperature. J Eng 2014:1–8

    Article  Google Scholar 

  19. Schroder DK (2013) Progress in SiC materials/devices and their competition. Selected topics in electronics and systems, In: Cristoloveanu S, Shur MS (Ed) Frontiers in Electronics, vol 53. World Scientific Publishing Co. Pte. Ltd., Singapore-New Jersey-London, pp 69–92

  20. Ropagnol X, Bouvier M, Reid M, Ozaki T (2014) Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. J Appl Phys 116:043107/1–043107/7

    Article  Google Scholar 

  21. Schnabel M, Weiss C, Löper P, Canino M, Summonte C, Wilshaw PR, Janz S (2014) Nanocrystalline SiC formed by annealing of a-SiC:H on Si substrates: a study of dopant interdiffusion. J Appl Phys 116:024315/1–024315/10

    Article  Google Scholar 

  22. Chen LY, Johnson RW, Neudeck PG, Beheim GM, Spry DJ, Meredith RD, Hunter GW (2012) Packaging technologies for 500°C SiC electronics and sensors. Mater Sci Forum 717-720:1033–1036

    Article  Google Scholar 

  23. Scace RI, Slack GA (1960) Silicon carbide – a high temperature semiconductor. Pergamon Press, Oxford, London, New York, Paris

    Google Scholar 

  24. Karandikar P, Evans G, Klier E, Aghajanian M (2013) In: Halbig Michael MS, Narayan R, Colombo P (eds) Advances in bioceramics and porous ceramics V, vol 33(6). Wiley, Hoboken, NJ, USA, pp 153–161

  25. Ledoux MJ, Pham-Huu C (2001) A novel catalyst support for heterogeneous catalysis. Cattech 5:226–246

    Article  Google Scholar 

  26. Dhiman R, Johnson E, Skou EM, Morgen P, Andersen SM (2013) SiC nanocrystals as Pt catalyst supports for fuel cell applications. J Mater Chem A 1:6030–6036

    Article  Google Scholar 

  27. Leroi P, Madani B, Pham-Huu C, Ledoux M-J, Savin-Poncet S, Bousquet JL (2004) Ni/SiC: a stable and active catalyst for catalytic partial oxidation of methane. Catal Today 91-92:53–58

    Article  Google Scholar 

  28. Keller N, Vieira R, Nhut J-M, Pham-Huu C, Ledoux MJ (2005) New catalysts based on silicon carbide support for improvements in the sulfur recovery: new silicon carbide nanotubes as catalyst support for the trickle-bed H2S oxidation. J Braz Chem Soc 16:514–519

    Article  Google Scholar 

  29. Marín P, Ordóñez S, Díez FV (2012) Performance of silicon-carbide foams as supports for Pd-based methane combustion catalysts. J Chem Technol Biotechnol 87:360–367

    Article  Google Scholar 

  30. Schaafhausen S, Yazhenskikh E, Heidenreich S, Müller M (2014) Corrosion of silicon carbide hot gas filter candles in gasification environment. J Eur Ceram Soc 34:575–588

    Article  Google Scholar 

  31. Bläsing M, Schaafhausen S, Müller M (2014) Investigation of alkali induced corrosion of SiC filter candles at high temperature, in gasification environment. J Eur Ceram Soc 34:1041–1044

    Article  Google Scholar 

  32. Zhu S, Ding S, Xi H, Wang R (2005) Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater Lett 59:595–597

    Article  Google Scholar 

  33. Fukushima M, Zhou Y, Yoshizawa Y (2009) Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3–Y2O3 additives. J Membr Sci 339:78–84

    Article  Google Scholar 

  34. Suwanmethanond V, Goo E, Liu PKT, Johnston G, Sahimi M, Tsotsis TT (2000) Porous silicon carbide sintered substrates for high-temperature membranes. Ind Eng Chem Res 39:3264–3271

    Article  Google Scholar 

  35. Lin P-K, Tsai D-S (2005) Preparation and analysis of a silicon carbide composite membrane. J Am Ceram Soc 80:365–372

    Article  Google Scholar 

  36. Fukushima M, Zhou Y, Miyazaki H, Yoshizawa Y, Hirao K, Iwamoto Y, Yamazaki S, Nagano T (2006) Microstructural characterization of porous silicon carbide membrane support with and without alumina additive. J Am Ceram Soc 89:1523–1529

    Article  Google Scholar 

  37. Iwamoto Y (2007) Precursors-derived ceramic membranes for high-temperature separation of hydrogen. J Ceram Soc Japan 115:947–954

    Article  Google Scholar 

  38. Simonenko EP, Simonenko NP, Zharkov MA, Shembel NL, Simonov-Emel’yanov ID, Sevastyanov VG, Kuznetsov NT (2015) Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder. J Mater Sci 50:733–744

    Article  Google Scholar 

  39. Simonenko EP, Simonenko NP, Derbenev AV, Nikolaev NA, Grashchenkov DV, Kuznetsov NT (2013) Synthesis of nanocrystalline silicon carbide using the sol-gel technique. Russ J Inorg Chem 58:1143–1151

    Article  Google Scholar 

  40. Sevast’yanov VG, Simonenko EP, Ignatov NA, Ezhov YS, Kuznetsov NT (2010) Low-temperature synthesis of TaC through transparent tantalum-carbon containing gel. Inorg Mater 46:495–500

    Article  Google Scholar 

  41. Simonenko EP, Ignatov NA, Simonenko NP, Ezhov YS, Sevastyanov VG, Kuznetsov NT (2011) Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russ J Inorg Chem 56:1681–1687

    Article  Google Scholar 

  42. Sevastyanov VG, Simonenko EP, Ignatov NA, Ezhov YS, Simonenko NP, Kuznetsov NT (2011) Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides. Russ J Inorg Chem 56:661–672

    Article  Google Scholar 

  43. Ciudad E, Sánchez-González E, Borrero-López O, Guiberteau F, Nygren M, Ortiz AL (2013) Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3+5Al2O3 or Y3Al5O12 additives. Scr Mater 69:598–601

    Article  Google Scholar 

  44. Hotta M (2012) Microstructural control for ultrafine-grained non-oxide structural ceramics. J Ceram Soc Japan 120:123–130

    Article  Google Scholar 

  45. He ZH, Katsui H, Tu R, Goto T (2014) Consolidation of SiC powder coated with SiO2 nanolayer by spark plasma sintering. Key Eng Mater 616:32–36

    Article  Google Scholar 

  46. Rahman A, Singh A, Harimkar SP, Singh RP (2014) Mechanical characterization of fine grained silicon carbide consolidated using polymer pyrolysis and spark plasma sintering. Ceram Int 40:12081–12091

    Article  Google Scholar 

  47. Suzuki TS, Uchikoshi T, Sakka Y (2014) Densification of SiC by colloidal processing and SPS without sintering additives. Adv Appl Ceram 113:85–88

    Article  Google Scholar 

  48. Sahin FC, Apak B, Akin I, Kanbur HE, Genckan DH, Turan A, Goller G, Yucel O (2012) Spark plasma sintering of B4C–SiC composites. Solid State Sci 14:1660–1663

    Article  Google Scholar 

  49. Fujisawa M, Hata T, Bronsveld P, Castro V, Tanaka F, Kikuchi H, Furuno T, Imamura Y (2004) SiC/C composites prepared from wood-based carbons by pulse current sintering with SiO2: electrical and thermal properties. J Eur Ceram Soc 24:3575–3580

    Article  Google Scholar 

  50. Zhou M, Rodrigo PDD, Wang X, Hu J, Dong S, Cheng Y-B (2014) A novel approach for preparation of dense TiC–SiC nanocomposites by sol–gel infiltration and spark plasma sintering. J Eur Ceram Soc 34:1949–1954

    Article  Google Scholar 

  51. Sevastyanov VG, Simonenko EP, Simonenko NP, Grashchenkov DV, Kablov EN, Kuznetsov NT (2013) Synthesis of SiC-whiskers via sol-gel technique in the bulk of SiC composite. In: The 19th international conference on composite materials, e-Proceedings, Montreal, 4695–4702

  52. Kuznetsov NT, Sevast’janov VG, Simonenko EP, Ignatov NA, Simonenko NP, Ezhov YS (2008) Method for obtaining highly-dispersible refractory carbides for coating and composites based thereon. Patent RU No. 2333888, 20 Sept 2008

  53. Kuznetsov NT, Sevast’yanov VG, Simonenko EP (2010) Finely dispersed refractory compounds for high-temperature ceramic matrix composite applications. Russ J Gen Chem 80:658–665

    Article  Google Scholar 

  54. Simonenko EP, Simonenko NP, Sevastyanov VG, Grashchenkov DV, Kuznetsov NT, Kablov EN (2011) Functionally graded composite material SiC/(ZrO2-HfO2-Y2O3) prepared via sol-gel technology. Composit Nanostr [Komposity i nanostructuri] 3:52–64

    Google Scholar 

  55. Sevastyanov VG, Ezhov YS, Simonenko EP, Kuznetsov NT (2004) Thermodynamic analysis of the production of silicon carbide via silicon dioxide and carbon. Mater Sci Forum 457-460:59–62

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research [grants no. 13-03-12206-ofi_m, 14-03-31002-mol_a].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Sevastyanov.

Ethics declarations

Conflict of Interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Papynov, E.K. et al. Preparation of porous SiC-ceramics by sol–gel and spark plasma sintering. J Sol-Gel Sci Technol 82, 748–759 (2017). https://doi.org/10.1007/s10971-017-4367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4367-2

Keywords

Navigation