Skip to main content
Log in

Gel formation during sol–gel synthesis of silicon dioxide

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effects of water and catalyst (formic acid) concentrations and temperature on tetraethoxysilane hydrolysis, followed by gel formation, have been studied. The catalyst concentration is found to have a stronger effect on the variation rate of dynamic viscosity of the system compared to the effect of water concentration. The thermal behavior of the thus-prepared xerogels has been studied in an air flow; distinctions have been noticed for samples whose initial dispersion-bound systems were formed at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nocun, M. Sroda, and M. Ciecinska, Opt. Appl. 45 (1), 125 (2015).

    CAS  Google Scholar 

  2. Z.-H. Zhang, W.-Q. Wang, G.-Q. Zu, et al., Hangkong Cailiao Xuebao (J. Aeronaut. Mater.) 35 (1), 87 (2015).

    CAS  Google Scholar 

  3. O. A. Shilova, J. Sol–Gel Sci. Techn. 68, 387 (2013).

    Article  CAS  Google Scholar 

  4. T. V. Khamova, E. S. Kolovangina, S. V. Myakin, et al., Russ. J. Gen. Chem. 83, 1594 (2013).

    Article  CAS  Google Scholar 

  5. G. F. Krysenko, E. I. Mel’nichenko, and D. G. Epov, Russ. J. Inorg. Chem. 53, 1013 (2008).

    Article  Google Scholar 

  6. L. Zhang and D. F. Zhang, Russ. J. Inorg. Chem. 50, 925 (2005).

    Google Scholar 

  7. J. Niedziolka-Jonsson, M. Jonsson-Niedziolka, W. Nogala, et al., Electrochim. Acta 56, 3311 (2011).

    Article  CAS  Google Scholar 

  8. S. Cai, Q. Xue, B. Xia, et al., Mater. Lett. 156, 14 (2015).

    Article  CAS  Google Scholar 

  9. Handbook of Sol–Gel Science and Technology. Processing, Characterization and Applications, Ed. by S. Sakka (Kluwer, Boston/Dordrecht/London/Moscow, 2005).

  10. C. J. Brinker and G. W. Scherer, Sol–Gel Science. The Physics and Chemistry of Sol–Gel Processing (Academic Press, Boston/London/Sydney/Tokyo/Toronto/San Diego/New York, 1990).

    Google Scholar 

  11. N. A. Shabanova and P. D. Sarkisov, Fundamentals of Sol–Gel Technology of Nanosized Silica (Akademkniga, Moscow, 2004) [in Russian].

    Google Scholar 

  12. N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, The Chemistry and Technology of Nanosized Oxides (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  13. Y. Lu, Z.-Y. Jiang, S.-W. Xu, et al., Catal. Today 115, 263 (2006).

    Article  CAS  Google Scholar 

  14. M. Alnaief, S. Antonyuk, C. M. Hentzschel, et al., Micropor. Mesopor. Mater 160, 167 (2012).

    Article  CAS  Google Scholar 

  15. T. Kristiansen and K. Mathisen, J. Phys. Chem. C 118, 2439 (2014).

    Article  CAS  Google Scholar 

  16. S. A. Lermontov, A. N. Malkova, and N. A. Sipyagina, Russ. J. Inorg. Chem. 60, 541 (2015).

    Article  CAS  Google Scholar 

  17. S. W. Yao and H. P. Kuo, Procedia Eng. 102, 1254 (2015).

    Article  CAS  Google Scholar 

  18. M. H. Ghasemi, S. J. Ahmadi, D. S. Moradi, et al., Rare Metals, No. 2 (2015). DOI:10.1007/s12598-0150455-z

    Google Scholar 

  19. M. Shahid, I. El Saliby, L. D. Tijing, et al., J. Nanosci. Nanotechnol. 15, 5326 (2015).

    Article  CAS  Google Scholar 

  20. N. Lari, S. Ahangarani, and A. Shanaghi, J. Mater. Eng. Perform 24, 2645 (2015).

    Article  CAS  Google Scholar 

  21. J. Gehring, D. Schleheck, B. Trepka, et al., ACS Appl. Mater. Interfaces 7, 1021 (2015).

    Article  CAS  Google Scholar 

  22. S. Bernardino, N. Estrela, V. Ochoa-Mendes, et al., J. Sol–Gel Sci. Technol. 58, 545 (2011).

    Article  CAS  Google Scholar 

  23. G. A. Kulikova, E. V. Parfenyuk, I. V. Ryabinina, et al., J. Biomed. Mater. Res. A 95A, 434 (2010).

    Article  CAS  Google Scholar 

  24. T. V. Khamova, O. A. Shilova, G. P. Kopitsa, et al., Phys. Solid State 56, 105 (2014).

    Article  CAS  Google Scholar 

  25. Y. Kobayashi, H. Matsudo, Y. Kubota, et al., J. Chem. Eng. Jpn 48, 112 (2015).

    Article  CAS  Google Scholar 

  26. P. Yang, K. Matras-Postolek, X. Song, et al., Mater. Res. Bull. 70, 385 (2015).

    Article  CAS  Google Scholar 

  27. Yu. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., Glass Ceram. 71, 400 (2015).

    Article  CAS  Google Scholar 

  28. Yu. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., Russ. J. Appl. Chem. 87, 1625 (2014).

    Article  CAS  Google Scholar 

  29. A. S. Chainikova, L. A. Orlova, N. V. Popovich, et al., Russ. J. Appl. Chem. 87, 1201 (2014).

    Article  CAS  Google Scholar 

  30. Y. He, C. Chen, F. Zhong, et al., High Perform. Polym. 27, 352 (2015).

    Article  CAS  Google Scholar 

  31. N. A. Shabanova and I. A. Belova, Glass Phys. Chem. 38, 254 (2012).

    Article  CAS  Google Scholar 

  32. N. A. Shabanova and M. N. Sergeeva, Russ. J. Appl. Chem. 84, 1422 (2011).

    Article  CAS  Google Scholar 

  33. L. Yang, Y. Xu, S. Qiu, and Y. Zhang, J. Polym. Res. 19 (12), 1 (2012).

    Article  Google Scholar 

  34. S. A. Jadhav, I. Miletto, V. Brunella, et al., Polym. Adv. Technol. (in press).

  35. S. Kim, S. Ando, and X. Wang, R. Soc. Chem. Adv. 5, 40046 (2015).

    CAS  Google Scholar 

  36. R. Suleiman, H. Dafalla, and B. El Ali, R. Soc. Chem. Adv. 5, 39155 (2015).

    CAS  Google Scholar 

  37. E. P. Simonenko, N. P. Simonenko, A. V. Derbenev, et al., Russ. J. Inorg. Chem. 58, 1143 (2013).

    Article  CAS  Google Scholar 

  38. E. P. Simonenko, N. P. Simonenko, M. A. Zharkov, et al., J. Mater. Sci. 50, 733 (2015).

    Article  CAS  Google Scholar 

  39. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Kompozity Nanostrukt. 6 (4), 198 (2014).

    CAS  Google Scholar 

  40. E. P. Simonenko and N. A. Ignatov, et al., Inorg. Mater. 46, 495 (2010).

    Article  Google Scholar 

  41. V. G. Sevastyanov, E. P. Simonenko, N. A. Ignatov, et al., Russ. J. Inorg. Chem. 56, 661 (2011).

    Article  CAS  Google Scholar 

  42. E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 56, 1681 (2011).

    Article  CAS  Google Scholar 

  43. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013).

    Article  CAS  Google Scholar 

  44. E. P. Simonenko and A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013).

    Article  Google Scholar 

  45. E. P. Simonenko and A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014).

    Article  Google Scholar 

  46. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014).

    Article  CAS  Google Scholar 

  47. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 60, (2015).

    Google Scholar 

  48. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Kompozity Nanostrukt. 3 (4), 52 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Sevastyanov.

Additional information

Original Russian Text © E.P. Simonenko, A.V. Derbenev, N.P. Simonenko, V.G. Sevastyanov, N.T. Kuznetsov, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 12, pp. 1579–1587.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Derbenev, A.V., Simonenko, N.P. et al. Gel formation during sol–gel synthesis of silicon dioxide. Russ. J. Inorg. Chem. 60, 1444–1451 (2015). https://doi.org/10.1134/S0036023615120220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615120220

Keywords

Navigation