Skip to main content
Log in

Variability of Composition of Microbiota of Gastrointestinal Tract of Perch Perca fluviatilis and Prussian Carp Carassius gibelio During the Vegetative Season

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The composition of the microbiota of the digestive tract of two fish species differing in feeding habits—perch Perca fluviatilis and Prussian carp Carassius gibelio from Malye Chany Lake (West Siberia) was studied by sequencing of the V3–V4 region of the 16S ribosomal RNA gene using the Illumina MiSeq platform. During the vegetative season, the composition of the gastrointestinal microbiota of the studied species had varied with the highest diversity of bacteria in the gastrointestinal tract of perch in spring, while in the intestine of Prussian carp in spring and autumn. The perch gastrointestinal microbiota was dominated by Sediminibacterium, unclassified and uncultivated Chitinophagaceae, Sphingomonas, Caulobacter, Phyllobacterium, Haematospirillum, Cetobacterium, Vibrio, Aeromonas, and Plesiomonas; in Prussian carp, Sediminibacterium, unclassified Vibrionaceae and Chitinophagaceae, Sphingomonas, Caulobacter, Vibrio and Aeromonas. It is assumed that changes in the composition of microbial communities during the vegetative season are associated with the seasonal changes in water temperature and food resources of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Al-Harbi, A.H. and Uddin, M.N., Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthen ponds in Saudi Arabia, Aquaculture, 2004, vol. 229, nos. 1–4, pp. 37–44. https://doi.org/10.1016/S0044-8486(03)00388-0

    Article  Google Scholar 

  2. Arias, C.R., Ray, C.L., Cai, W., and Willmon, E., Fish are not alone: characterization of the gut and skin microbiomes of largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus), and spotted gar (Lepisosteus oculatus), J. Aquacult. Fish. Fish Sci., 2019, vol. 2, no. 2, pp. 138–154. https://doi.org/10.25177/JAFFS.2.2.RA.459

    Article  Google Scholar 

  3. Austin, B., The bacterial microflora in fish, revised, Sci. World J., 2006, vol. 6, pp. 931–945. https://doi.org/10.1100/tsw.2006.181

    Article  CAS  Google Scholar 

  4. Bazhenov, S.V., Khrulnova, S.A., Konopleva, M.N., and Manukhov, I.V., Seasonal changes in luminescent intestinal microflora of the fish inhabiting the Bering and Okhotsk seas, FEMS Microbiol. Lett., 2019, vol. 366, no. 4, art. ID fnz040. https://doi.org/10.1093/femsle/fnz040

    Article  CAS  PubMed  Google Scholar 

  5. Bezmaternykh, D.M., Composition, structure, and quantitative characteristics of zoobenthos of the Lake Chany in 2001, Sib. Ekol. Zh., 2005, no. 2, pp. 249–254.

  6. Bolnick, D.I., Snowberg, L.K., Hirsch, P.E., et al., Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (three spine stickleback and Eurasian perch), Ecol. Lett., 2014, vol. 17, no. 8, pp. 979–987. https://doi.org/10.1111/ele.12301

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bulatov, V.I., Rotanova, I.N., and Chernykh, D.V., Landscape-ecological and cartographic analysis of lake-basin systems in the south of Western Siberia (Chany and Kulundinskoe lakes), Sib. Ekol. Zh., 2005, no. 2, pp. 175–182.

  8. Butt, R.L. and Volkoff, H., Gut microbiota and energy homeostasis in fish, Front. Endocrinol. (Lausanne), 2019, vol. 10, no. 9, pp. 1–12. https://doi.org/10.3389/fendo.2019.00009

    Article  Google Scholar 

  9. Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, no. 5, pp. 335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clements, K.D., Angert, E.R., Montgomery, W.L., and Choat, J.H., Intestinal microbiota in fishes: what’s known and what’s not, Mol. Ecol., 2014, vol. 23, no. 8, pp. 1891–1898. https://doi.org/10.1111/mec.12699

    Article  PubMed  Google Scholar 

  11. Dulski, T., Kozłowski, K., and Ciesielsk, S., Habitat and seasonality shape the structure of tench (Tinca tinca L.) gut microbiome, Sci. Rep., 2020a, vol. 10, no. 4460, pp. 1–11. https://doi.org/10.1038/s41598-020-61351-1

    Article  CAS  Google Scholar 

  12. Dulski, T., Kujawa, R., Godzieba, M., and Ciesielski, S., Effect of salinity on the gut microbiome of pike fry (Esox lucius), Appl. Sci., 2020b, vol. 10, no. 7, pp. 1–17. https://doi.org/10.3390/app10072506

    Article  CAS  Google Scholar 

  13. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, no. 19, pp. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  14. Egerton, S., Culloty, S., Whooley, J., et al., The gut microbiota of marine fish, Front. Microbiol., 2018, vol. 9, art. ID 873. https://doi.org/10.3389/fmicb.2018.00873

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fakruddin, M. and Mannan, K., Methods for analyzing diversity of microbial communities in natural environments, Ceylon J. Sci., Biol. Sci., 2013, vol. 42, no. 1, pp. 19–33. https://doi.org/10.4038/cjsbs.v42i1.5896

    Article  Google Scholar 

  16. Fonseca, F., Cerqueira, R., and Fuentes, J., Impact of ocean acidification on the intestinal microbiota of the marine sea bream (Sparus aurata L.), Front. Physiol., 2019, vol. 10, no. 1446, pp. 1–10. https://doi.org/10.3389/fphys.2019.01446

    Article  Google Scholar 

  17. Ghanbari, M., Kneifel, W., and Domig, K.J., A new view of the fish gut microbiome: advances from next-generation sequencing, Aquaculture, 2015, vol. 448, pp. 464–475. https://doi.org/10.1016/j.aquaculture.2015.06.033

    Article  CAS  Google Scholar 

  18. Givens, C.E., A fish tale: comparison of the gut microbiome of 15 fish species and the influence of diet and temperature on its composition, PhD Thesis, Athens, GA: Univ. of Georgia, 2012. http://getd.libs.uga.edu/pdfs/givens_carrie_e_201212_phd.pdf.

    Google Scholar 

  19. Han, S., Liu, Y., Zhou, Z., et al., Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences, Aquacult. Res., 2010, vol. 42, no. 1, pp. 47–56. https://doi.org/10.1111/j.1365-2109.2010.02543.x

    Article  CAS  Google Scholar 

  20. Huang, H., Shi, P., Wang, Y., et al., Diversity of beta-propeller phytase gene in the intestinal contents of grass carp insight into the major phosphorus release from phytate in nature, Appl. Environ. Microbiol., 2009, vol. 75, no. 6, pp. 1508–1516. https://doi.org/10.1128/AEM.02188-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huber, I., Spanggaard, B., Appel, K.F., et al., Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum), J. Appl. Microbiol., 2004, vol. 96, no. 1, pp. 117–132. https://doi.org/10.1046/j.1365-2672.2003.02109.x

    Article  CAS  PubMed  Google Scholar 

  22. Kanaya, G., Yadrenkina, E.N., Zuykova, E.I., et al., Contribution of organic matter sources to cyprinid fishes in the Chany Lake–Kargat River estuary, western Siberia, Mar. Freshwater Res., 2009, vol. 60, no. 6, pp. 510–518. https://doi.org/10.1071/MF08108

    Article  CAS  Google Scholar 

  23. Kanaya, G., Solovyev, M.M., Shikano, S., et al., Application of stable isotopic analyses for fish host–parasite systems: an evaluation tool for parasite-mediated material flow in aquatic ecosystems, Aquat. Ecol., 2019, vol. 53, no. 2, pp. 217–232. https://doi.org/10.1007/s10452-019-09684-6

    Article  CAS  Google Scholar 

  24. Kashinskaya, E.N., Belkova, N.L., Izvekova, G.I., et al., A comparative study on microbiota from the gut of Prussian carp (Carassius gibelio) and their aquatic environmental compartments, using different molecular methods, J. Appl. Microbiol., 2015, vol. 119, no. 4, pp. 948–961. https://doi.org/10.1111/jam.12904

    Article  CAS  PubMed  Google Scholar 

  25. Kashinskaya, E.N., Andree, K.B., Simonov, E.P., and Solovyev, M.M., DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp, Carassius gibelio, FEMS Microbiol. Ecol., 2017, vol. 93, no. 2, pp. 1–14. https://doi.org/10.1093/femsec/fiw240

    Article  CAS  Google Scholar 

  26. Kashinskaya, E.N., Simonov, E.P., Kabilov, M.R., et al., Diet and other environmental factors shape the bacterial communities of fish gut in an eutrophic lake, J. Appl. Microbiol., 2018, vol. 125, no. 6, pp. 1626–1641. https://doi.org/10.1111/jam.14064

    Article  CAS  Google Scholar 

  27. Kogan, A.B., Daily diet and the intensity of intestinal filling in fishes, Vopr. Ikhtiol., 1969, vol. 9, no. 5, pp. 596–602.

    Google Scholar 

  28. Kuz’mina, V.V., Fiziologo-biokhimicheskie osnovy ekzotrofii ryb (Physiological and Biochemical Principles of Fish Exotrophy), Moscow: Nauka, 2005.

  29. Luo, L., Chen, X., and Cai, X., Effects of Andrographis paniculata on the variation of intestinal microflora of Ctenopharyngodon idellus, J. Fish Sci. China, 2001, vol. 25, pp. 232–237.

    CAS  Google Scholar 

  30. Michel, P. and Oberdorff, T., Feeding habits of fourteen European freshwater fish species, Cybium, 1995, vol. 19, no. 1, pp. 5–46.

    Google Scholar 

  31. Miseiko, G.N. and Mikhalina, V.V., Zoobenthos of the Lake Chany (in summer 2002), Izv. Altai. Gos. Univ., 2004, no. 3, pp. 90–93.

  32. Nayak, S.K., Role of gastrointestinal microbiota in fish, Aquacult. Res., 2010, vol. 41, no. 11, pp. 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x

    Article  Google Scholar 

  33. Neuman, C., Hatje, E., Zarkasi, K.Z., et al., The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic salmon (Salmo salar L.), Aquacult. Res., 2014, vol. 47, no. 2, pp. 660–672. https://doi.org/10.1111/are.12522

    Article  CAS  Google Scholar 

  34. Okuzumi, M. and Horie, S., Studies on the bacterial flora in the intestines of various marine fish, Bull. Jpn. Soc. Sci. Fish., 1969, vol. 35, pp. 93–100.

    Article  Google Scholar 

  35. Opredelitel’ presnovodnykh bespozvonochnykh evropeiskoi chasti SSSR (plankton i bentos) (Guide for Identification of Freshwater Invertebrates of European Part of USSR: Plankton and Bentos), Leningrad: Gidrometeoizdat, 1977.

  36. Opredelitel’ presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii. Tom 2. Rakoobraznye (Guide for Identification of Freshwater Invertebrates of Russia and Adjacent Territories, Vol. 2: Crustacean), St. Petersburg: Nauka, 1995.

  37. Özdilek, Ş.Y. and Jones, R.I., The diet composition and trophic position of introduced Prussian carp Carassius gibelio (Bloch, 1782) and native fish species in a Turkish river, Turk. J. Fish. Aquat. Sci., 2014, vol. 14, pp. 769–776. https://doi.org/10.4194/1303-2712-v14_3_19

    Article  Google Scholar 

  38. Polenogova, O.V., Kabilov, M.R., Tyurin, M.V., et al., Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection, Sci. Rep., 2019, vol. 9, no. 1, p. 4012. https://doi.org/10.1038/s41598-019-40301-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Price, M.N., Dehal, P.S., and Arkin, A.P., FastTree 2—Approximately maximum-likelihood trees for large alignments, PLoS One, 2010, vol. 5, no. 3, art. ID e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quast, C., Pruesse, E., Yilmaz, P., et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 2013, vol. 41, pp. D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  41. Ringø, E., Seppola, M., Berg, A., et al., Characterization of Carnobacterium divergens strain isolated from intestine of Arctic charr (Salvelinus alpinus L.), Syst. Appl. Microbiol., 2002, vol. 25, no. 1, pp. 120–129. https://doi.org/10.1078/0723-2020-00080

    Article  PubMed  Google Scholar 

  42. Ringø, E.S., Sperstad, R., Myklebust, S., et al., Characterization of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.). The effect of fish meal, standard soybean meal and a bioprocessed soybean meal, Aquaculture, 2006, vol. 261, no. 3, pp. 829–841. https://doi.org/10.1016/j.aquaculture.2006.06.030

    Article  CAS  Google Scholar 

  43. Ringø, E., Zhou, Z., Vecino, J.L.G., et al., Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquacult. Nutr., 2016, vol. 22, no. 2, pp. 219–282. https://doi.org/10.1111/anu.12346

    Article  CAS  Google Scholar 

  44. Romero, J., Ringø, E., and Merrifield, D.L., The gut microbiota of fish, in Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, Ringø, E. and Merrifield, D.L., Eds., Chichester: Wiley, 2014, pp. 75–100. https://doi.org/10.1002/9781118897263.ch4

  45. Savkin, V.M., Orlova, G.A., Vasil’ev, O.F., et al., Hydrology, in Obzor ekologicheskogo sostoyaniya ozera Chany (Zapadnaya Sibir’) (Review of Ecological State of the Lake Chany (Western Siberia)), Novosibirsk: Geo, 2015, pp. 50–60.

  46. Shivokene, Ya., Simbiontnoe pishchevarenie u gidrobiontov i nasekomykh (Symbiotic Digestion in Hydrobionts and Insects), Vilnius: Mokslas, 1989.

  47. Schloss, P.D., Westcott, S.L., Ryabin, T., et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, no. 23, pp. 7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt, V.T., Smith, K.F., Melvin, D.W., and Amaral-Zettler, L.A., Community assembly of a euryhaline fish microbiome during salinity acclimation, Mol. Ecol., 2015, vol. 24, no. 10, pp. 2537–2550. https://doi.org/10.1111/mec.13177

    Article  PubMed  Google Scholar 

  49. Smirnova, N.P. and Shnitnikov, A.V., Pul’siruyushchee ozera Chany (Pulsing Lake Chany), Leningrad: Nauka, 1982

  50. Solovyev, M.M. Kashinskaya, E.N., Izvekova, G.I., et al., Feeding habits and ontogenic changes in digestive enzyme patterns in five freshwater teleosts, J. Fish Biol., 2014, vol. 85, no. 5, pp. 1–18. https://doi.org/10.1111/jfb.12489

    Article  CAS  Google Scholar 

  51. Solovyev, M.M., Kashinskaya, E.N., Izvekova, G.I., and Glupov, V.V., pH values and activity of digestive enzymes in the gastrointestinal tract of fish in Lake Chany (West Siberia), J. Ichthyol., 2015, vol. 55, no. 2, pp. 251–258. https://doi.org/10.1134/S0032945215010208

    Article  Google Scholar 

  52. Solovyev, M.M., Izvekova, G.I., Kashinskaya, E.N., and Gisbert, E., Dependence of pH values in the digestive tract of freshwater fishes on some abiotic and biotic factors, Hydrobiologia, 2018, vol. 807, no. 1, pp. 67–85. https://doi.org/10.1007/s10750-017-3383-0

    Article  CAS  Google Scholar 

  53. Sugita, H., Ishida, Y., Deguchi, Y., and Kadota, H., Bacterial flora in the gastrointestine of Tilapia nilotica adapted in seawater, Bull. Jpn. Soc. Sci. Fish., 1982, vol. 48, no. 7, pp. 987–991.

    Article  Google Scholar 

  54. Sugita, H., Iwata, J., Miyajima, C., et al., Changes in microflora of a puffer fish Fugu niphobles, with different water temperatures, Mar. Biol., 1989, vol. 101, no. 3, pp. 299–304.

    Article  Google Scholar 

  55. Sullam, K.E. Essinger, S.D., Lozupone, C.A., et al., Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis, Mol. Ecol., 2012, vol. 21, no. 13, pp. 3363–3378. https://doi.org/10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  Google Scholar 

  56. Syvokiene, J., Mickeniene, L., and Bubinas, A., Characteristics of microflora of the digestive tract of commercial fish depending on fish feeding, Ekologija, 1999, no. 4, pp. 46–54.

  57. Tanaka, M., Kawai, S., Seikai, T., and Burke, J.S., Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement, Mar. Freshwater Behav. Phys., 1996, vol. 28, nos. 1–2, pp. 19–31. https://doi.org/10.1080/10236249609378976

    Article  Google Scholar 

  58. Timofeeva, M.V., Yadrenkin, A.V., and Yadrenkina, E.N., Zooplankton of the southeastern part of the lake system of the Chany Lake and its role in feeding of fish juveniles, in Ryboproduktivnost’ ozer Zapadnoi Sibiri (Fish Productivity of the Lakes of Western Siberia), Novosibirsk: Nauka, 1991, pp. 101–109.

  59. Uchii, K., Matsui, K., Yonekura, R., et al., Genetic and physiological characterization of the intestinal bacterial microbiota of bluegill (Lepomis macrochirus) with three different feeding habits, Microbiol. Ecol., 2006, vol. 51, no. 3, pp. 277–284. https://doi.org/10.1007/s00248-006-9018-z

    Article  CAS  Google Scholar 

  60. van Kessel, M., Dutilh, B.E., Neveling, K., et al., Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.), AMB Express, 2011, vol. 1, no. 41, pp. 1–9. https://doi.org/10.1186/2191-0855-1-41

    Article  CAS  Google Scholar 

  61. Wolda, H., Similarity indices, sample size and diversity, Oecologia, 1981, vol. 50, pp. 296–302. https://doi.org/10.1007/BF00344966

    Article  PubMed  Google Scholar 

  62. Wong, S. and Rawls, J.F., Intestinal microbiota composition in fishes is influenced by host ecology and environment, Mol. Ecol., 2012, vol. 21, no. 13, pp. 3100–3102. https://doi.org/10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu, S., Gao, T., Zheng, Y., et al., Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco), Aquaculture, 2010, vol. 303, nos. 1–4, pp. 1–7. https://doi.org/10.1016/j.aquaculture.2009.12.025

    Article  CAS  Google Scholar 

  64. Wu, S., Wang, G., Angert, E.R., et al., Composition, diversity, and origin of the bacterial community in grass carp intestine, PLoS One, 2012, vol. 7, no. 2, art. ID e30440. https://doi.org/10.1371/journal.pone.0030440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, G., Bao, B., Peatman, E., et al., Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus, Aquaculture, 2007, vol. 262, nos. 2–4, pp. 183–191. https://doi.org/10.1016/j.aquaculture.2006.11.031

    Article  Google Scholar 

  66. Zarkasi, K.Z., Abell, G.C.J., Taylor, R.S., et al., Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system, J. Appl. Microbiol., 2014, vol. 117, no. 1, pp. 18–27. https://doi.org/10.1111/jam.12514

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, W., Chen, X., and Zhang, D., A preliminary study on the influence of different feeding stuff on intestinal microflora of grass carp (Ctenopharyngodon idellus), J. Huazhong Agric. Univ., 1998, vol. 17, no. 3, pp. 252–256.

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 18-34-20122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kashinskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashinskaya, E.N., Simonov, E.P., Izvekova, G.I. et al. Variability of Composition of Microbiota of Gastrointestinal Tract of Perch Perca fluviatilis and Prussian Carp Carassius gibelio During the Vegetative Season. J. Ichthyol. 61, 955–971 (2021). https://doi.org/10.1134/S0032945221060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945221060060

Keywords:

Navigation