Skip to main content
Log in

Particle Dissolution and Recrystallization Progress of Al–Mg–Si–Cu Alloy during Solution Treatment

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Particle dissolution and recrystallization progress of Al–Mg–Si–Cu alloy during solution treatment at 555°C was studied by microstructure, hardness and electrical conductivity characterization, and analytical calculation in the present study. The results show that recrystallization and dissolution could occur concurrently during solution treatment, and the solution time has an appreciable influence on hardness, electrical conductivity, secondary phase particles and grain structure of the Al–Mg–Si–Cu alloy. As the solution time increases, the hardness decreases at first, and then increases, and almost remains constant finally; the electrical conductivity decreases sharply at first, and then decreases slowly, and almost keeps constant finally. In addition, the microstructure transforms from the deformation elongated bands to recrystallization equiaxed grains, and the particles are gradually dissolved with the increase of the solution time. The dissolution of the particles may be completed in the range of 120–300 s and the recrystallization was finished not exceeding 60 s. The predicted dissolution time by an analytical model combining classical diffusion-controlled dissolution equation for a single spherical particle and a John–Mehl–Avarami-like (JMA-like) equation is approximately 170 s, which is consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, “Recent development in aluminium alloys for the automotive industry,” Mater. Sci. Eng., A 280, 37–49 (2000).

    Article  Google Scholar 

  2. J. Hirsch, “Recent development in aluminium for automotive applications,” Trans. Nonferrous Met. Soc. China 24, 1995–2002 (2014).

    Article  CAS  Google Scholar 

  3. A. Yu. Churyumov, A. V. Mikhailovskaya, A. D. Kotov, A. I. Bazlov, and V. K. Portnoi, “Developement of mathematical models of superplasticity properties as a function of parameters of aluminum alloys of Al–Mg–Si system,” Phys. Met. Metallogr. 114, 272–278 (2013).

    Article  Google Scholar 

  4. J. Hirsch and T. Al-Samman, “Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications,” Acta Mater. 61, 818–843 (2013).

    Article  CAS  Google Scholar 

  5. X. W. Ren, Y. C. Huang, and Y. Liu, “Effect of homogenization on microstructure and properties of Al–Mg–Si roll-casting sheet,” Phys. Met. Metallogr. 119, 789–796 (2018).

    Article  Google Scholar 

  6. O. Engler and J. Hirsch, “Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications-a review,” Mater. Sci. Eng., A 336, 249–262 (2002).

    Article  Google Scholar 

  7. X. F. Wang, M. X. Guo, C. Q. Ma, J. B. Chen, J. S. Zhang, and L. Z. Zhuang, “Effect of particle size on the microstructure, texture, and mechanical properties of Al–Mg–Si alloy,” Int. J. Miner. Metall. Mater. 25, 957–966 (2018).

    Article  Google Scholar 

  8. X. F. Wang, M. X. Guo, L. Y. Cao, J. R. Luo, J. S. Zhang, and L. Z. Zhuang, “Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment,” Mater. Sci. Eng., A 621, 8–17 (2015).

    Article  CAS  Google Scholar 

  9. G. Thomas and M. J. Whelan, “Observations of precipitation in thin foils of aluminium +4% copper alloy,” Philos. Mag. 6, 1103–1114 (1961).

    Article  CAS  Google Scholar 

  10. H. B. Aaron, D. Fainstein, and G. R. Kotler, “Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations,” J. Appl. Phys. 41, 4404–4410 (1970).

    Article  Google Scholar 

  11. M. J. Whelan, “On the kinetics of precipitate dissolution,” Met. Sci. J. 3, 95–97 (1968).

    Article  Google Scholar 

  12. L. C. Brown, “Diffusion controlled dissolution of planar, cylindrical, and spherical precipitates,” J. Appl. Phys. 47, 449–458 (1976).

    Article  Google Scholar 

  13. G. Wang, D. S. Xu, N. Ma, N. Zhou, E. J. Payton, R. Yang, M. J. Mills, and Y. Wang, “Simulation study of effects of initial particle size distribution on dissolution,” Acta Mater. 57, 316–325 (2009).

    Article  CAS  Google Scholar 

  14. P. Ferro, “A dissolution kinetics model and its application to duplex stainless steels,” Acta Mater. 61, 3141–3147 (2013).

    Article  CAS  Google Scholar 

  15. N. Nojiri and M. Enomoto, “Diffusion-controlled dissolution of a spherical precipitate in an infinite binary alloy,” Scr. Metall. Mater. 32, 787–791 (1995).

    Article  CAS  Google Scholar 

  16. Q. Zuo, F. Liu, L. Wang, C. F. Chen, and Z. H. Zhang, “An analytical model for secondary phase dissolution kinetics,” J. Mater. Sci. 49, 3066–3079 (2014).

    Article  CAS  Google Scholar 

  17. X. K. Zhang, M. X. Guo, J. S. Zhang, and L. Z. Zhuang, “Dissolution of precipitates during solution treatment of Al–Mg–Si–Cu alloys,” Metall. Mater. Trans. B 47, 608–620 (2016).

    Article  CAS  Google Scholar 

  18. X. F. Wang, M. X. Guo, A. Chaupis, J. R. Luo, J. S. Zhang, and L. Z. Zhuang, “Effect of solution time on microstructure, texture and mechanical properties of Al–Mg–Si–Cu alloys,” Mater. Sci. Eng., A 644, 137–151 (2015).

    Article  CAS  Google Scholar 

  19. O. Engler and J. Hirsch, “Recrystallization textures and plastic anisotropy in Al–Mg–Si sheet alloys,” Mater. Sci. Forum 217222, 479–486 (1996).

  20. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, and A. D. Rollett, “Current issues in recrystallization: a review,” Mater. Sci. Eng., A 238, 219–274 (1997).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China under grant no. 2016YFB0300801 the Opening Project of State Key Laboratory for Advanced Metal Material under grant no. 2019-Z02 and National Science Foundation of China under grant no. 52075272; the Science Challenge Project under grant no. TZ2018001; Zhejiang Provincial Natural Science Foundation of China under grant no. LQ17E010001; Ningbo Natural Science Foundation under grant no. 2018A610174; Natural Science Foundation of Ningbo University under grant no. XYL18017 and the K.C. Wong Magna Fund from Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.F., Guo, M.X., Wang, H.B. et al. Particle Dissolution and Recrystallization Progress of Al–Mg–Si–Cu Alloy during Solution Treatment. Phys. Metals Metallogr. 121, 1258–1265 (2020). https://doi.org/10.1134/S0031918X20130189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20130189

Keywords:

Navigation