Skip to main content
Log in

Influence of Deformation on the Energy Spectrum and the Optical Properties of Fullerene C20 within the Hubbard Model

  • Theory of Metals
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The anticommutative Green’s functions and energy spectra of fullerene C20 with symmetry groups Ih, D5d, and D3d have been obtained in analytical form within the Hubbard model in the mean-field approximation. The methods of group theory have been used to classify energy states and identify allowed transitions in the energy spectra of C20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (2000).

    Article  Google Scholar 

  2. H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scot, M. Gelmont, D. Olevano, and B. V. Issendorff, “Gas-phase production and photoelectron spectroscopy of the smallest fullerene C20,” Nature 407, 60–63 (2000).

    Article  Google Scholar 

  3. V. Parasuk and J. Almlof, “C20: the smallest fullerene?,” Chem. Phys. Lett. 184, 187–190 (1991).

    Article  Google Scholar 

  4. G. Galli, F. Gygi, and J-.C. Golaz, “Vibrational and electronic properties of neutral and negatively charged C20 clusters,” Phys. Rev. B 57, 1860–1867 (1998).

    Article  Google Scholar 

  5. O. E. Glukhova, A. I. Zhbanov, and A. G. Rezkov, “Rotation of the inner shell in a C20@C80 Nanoparticle,” Phys. Solid State 47, 390–396 (2005).

    Article  Google Scholar 

  6. V. I. Minkin, B. Ya. Simkin, and P. M. Minyaev, Theory of the Structure of Molecules (Feniks, Rostov-on-Don, 1997).

    Google Scholar 

  7. A. A. Levin, Introduction to Quantum Chemistry of Solids (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  8. R. O. Zaitsev, “On the superconductivity of planar carbon compounds,” JETP Lett. 94, 224–229 (2011).

    Article  Google Scholar 

  9. R. A. Harris and L. M. Falicov, “Self-consistent theory of bond alternation in polyenes: Normal state, chargedensity waves, and spin-density waves,” J. Chem. Phys. 51, 5034–5041 (1969).

    Article  Google Scholar 

  10. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. London, Ser. A 276, 238–257 (1963).

    Article  Google Scholar 

  11. D. I. Khomskii, “Electronic correlations in narrow bands (the Hubbard model),” Fiz. Met. Metalloved. 29, 31–57 (1970) [in Russian].

    Google Scholar 

  12. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Itinerant Electrons (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  13. J. Kanamori, “Electron correlations and ferromagnetism of transition metals,” Prog. Theor. Phys. 30, 275–289 (1963).

    Article  Google Scholar 

  14. M. C. Gutzwiller, “Effect of correlation on the ferromagnetism of transition metals,” Phys. Rev. Letters 10, 159–162 (1963).

    Article  Google Scholar 

  15. R. H. McKenzie, “A strongly correlated electron model for the layered organic superconductors k-(BEDT-TTF)2X,” Comm. Condens. Matter Phys. 18, 309–317 (1998).

    Google Scholar 

  16. I. I. Mazin, “Electronic structure of high-temperature superconductors in the normal state,” Usp. Fiz. Nauk 158, 155–161 (1989).

    Article  Google Scholar 

  17. G. S. Ivanchenko and N. G. Lebedev, “Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model,” Phys. Solid State 49, 189–196 (2007).

    Article  Google Scholar 

  18. A. V. Silant’ev, “Energy spectrum and optical properties of C60 fullerene within the Hubbard model,” Phys. Met. Metallogr. 118, 1–9 (2017).

    Article  Google Scholar 

  19. A. V. Silant’ev, “Energy spectrum and optical properties of C70 fullerene in Hubbard model,” Opt. Spektrosk. 124, 159–166 (2018).

    Google Scholar 

  20. A. V. Silant’ev, “Investigation of nanosystems in the Hubbard model in the mean-field approximation,” Izv. Vuzov. Povolzh. Region. Fiz.-Matem. Nauki, No 1, 102–112 (2016).

    Google Scholar 

  21. A. V. Silant’ev, “Dimer in the extended Hubbard model,” Russ. Phys. J., 57, 1491–1502 (2015).

    Article  Google Scholar 

  22. A. V. Silant’ev, “Dimer in the Hubbard model,” Izv. Vuzov. Povolzh. Region. Fiz.-Matem. Nauki, No. 1, 168–182 (2015).

    Google Scholar 

  23. S. V. Tyablikov, Methods of Quantum Theory of Magnetism (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  24. M. Bühl and A. Hirsch, “Spherical aromaticity of fullerenes,” Chem. Rev. 101, 1153–1183 (2001).

    Article  Google Scholar 

  25. I. I. Sobel’man, Introduction to Theory of Atomic Spectra (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  26. I. B. Bersuker, The Yahn–Teller Effect (Cambridge University Press, 2006).

    Google Scholar 

  27. I. G. Kaplan, Symmetry of Many-Electron Systems (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Original Russian Text © A.V. Silant’ev, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 6, pp. 541–549.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. Influence of Deformation on the Energy Spectrum and the Optical Properties of Fullerene C20 within the Hubbard Model. Phys. Metals Metallogr. 119, 511–519 (2018). https://doi.org/10.1134/S0031918X18060133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18060133

Keywords

Navigation