Skip to main content

Advertisement

Log in

A Dimer in the Extended Hubbard Model

  • Published:
Russian Physics Journal Aims and scope

The anticommutative Green’s functions of a dimer and its energy spectrum and correlation functions are calculated exactly and in the approximation of static fluctuations within the framework of the Hubbard model. The calculation allows for the interaction of electrons located on different sites. It is shown that this leads to splitting of some energy levels and a substantial restructuring of the energy spectrum of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. Roy. Soc., A276, 238 (1963).

    Article  ADS  Google Scholar 

  2. M. C. Gutzwiller, Phys. Rev. Lett, 10, 159 (1963).

    Article  ADS  Google Scholar 

  3. J. Kanamori, Prog. Theor. Phys, 30, 275 (1963).

    Article  ADS  MATH  Google Scholar 

  4. S. P. Schubin and S. V. Wonsowskii, Proc. Roy. Soc., A145, 159 (1934).

    Article  ADS  Google Scholar 

  5. S. P. Schubin and S. V. Wonsowskii, Phys. Zs. Sow., 7, 292 (1935).

    Google Scholar 

  6. S. P. Schubin and S. V. Wonsowskii, Phys. Zs. Sow., 10, 348 (1936).

    MATH  Google Scholar 

  7. R. H. McKenzie, Comments Cond. Mat. Phys., 18, 309 (1998).

    Google Scholar 

  8. C. E. Campos, Phys. Rev., B-53, 12725 (1996).

    Article  ADS  Google Scholar 

  9. A. B. Harris and R. V. Lange, Phys. Rev, 157, 156 (1967).

    Article  Google Scholar 

  10. F. Castet, A. Fritsch, and L. Ducasse, J. Phys. I (France), 6, 583 (1996).

    Article  Google Scholar 

  11. L.Ducasse, J. Phys., 21, 115 (2000).

    Google Scholar 

  12. B. Alvarez-Fernandez and J. A. Blanco, Eur. J. Phys, 23, 11 (2002).

    Article  Google Scholar 

  13. E. J. Meniry, Introduction to the Hubbard Model, University of Belfast (2005).

  14. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Povolzhskii Region. Fiz.-Mat. Nauki, No. 3(19), 151 (2011).

  15. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Povolzhskii Region. Fiz.-Mat. Nauki, No. 4(20), 122 (2011).

  16. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Povolzhskii Region. Fiz.-Mat. Nauki, No. 4(24), 214 (2012).

  17. A. V. Silant’ev, Russ. Phys. J., 56, No. 2, 192 (2013).

    Article  MATH  Google Scholar 

  18. G. I. Mironov, Fiz. Tverd. Tela, 49, 527 (2007).

    Google Scholar 

  19. R. R. Nigmatullin, A. A. Khamzin, and I. I. Popov, Zh. Eksp. Teor. Fiz., 114, 355 (2012).

    Google Scholar 

  20. G. I. Mironov, Fiz. Tverd. Tela, 48, 48, 1299 (2006).

    Google Scholar 

  21. A. I. Murzashev, Zh. Eksp. Teor. Fiz., 135, 122 (2009).

    Google Scholar 

  22. S. V. Tyablikov, Methods of the Quantum Theory of Magnetism [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  23. F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods, Springer-Verlag, Berlin (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 37–45, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. A Dimer in the Extended Hubbard Model. Russ Phys J 57, 1491–1502 (2015). https://doi.org/10.1007/s11182-015-0406-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0406-z

Keywords

Navigation