Skip to main content
Log in

Energy Spectrum and Optical Properties of Fullerene C28 within the Hubbard Model

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The anticommutative Green’s functions and energy spectra of fullerene С28 and endohedral fullerene Zr@C28 with symmetry groups Td were obtained in the analytical form within the Hubbard model in the mean-field approximation. Group theory methods were used to categorize energy states and identify nonforbidden transitions in the energy spectra of С28 and Zr@C28 molecules with symmetry groups Td.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria, and R. E. Smalley, “Uranium stabilization of C28: A tetravalent fullerene,” Science 257, 1661–1664 (1993).

    Article  Google Scholar 

  2. A. N. Enyashin, V. V. Ivanovskaya, Yu. N. Makurin, and A. L. Ivanovskii, “Modeling of the structure and electronic structure of condensed phases of small fullerenes C28 and Zn@C28,” Phys. Solid State 48, 1569–1573 (2004).

    Article  Google Scholar 

  3. A. N. Enyashin and A. L. Ivanovskii, “New self-intercalated C28, Ti@C28 and Zn@C28 hyperdiamonds: Crystal structure and elastic and electronic properties,” JETP Lett. 86, 537–542 (2007).

    Article  CAS  Google Scholar 

  4. P. W. Dunk, N. K. Kaiser, M. Mulet-Gas, A. Rodriguez-Fortea, J. M. Poblet, H. Shinohara, C. L. Hendrickson, A. G. Marshall, and H. W. Kroto, “The smallest stable fullerene, M@C28 (M = Ti, Zr, U): Stabilization and growth from carbon vapor,” J. Am. Chem. Soc. 134, 9380–9389 (2012).

    Article  CAS  Google Scholar 

  5. A. Miralrio and L. E. Sansores, “On the search of stable, aromatic and ionic endohedral compounds of C28: A theoretical study,” J. Comput. Theor. Chem. 1083, 53–63 (2016).

    Article  CAS  Google Scholar 

  6. A. Gomez-Torres, R. Esper, P. W. Dunk, R. Molares- Martínez, A. Rodriguez-Fortea, L. Echegoyen, J. M. Poblet, “Small cage Uranofullerenes: 27 years after their first observation,” Helv. Chim. Acta. 46, 1–8 (2019).

    Google Scholar 

  7. P. W. Fowler and D. E. Manolopoulous, An Atlas of Fullerenes (Clarendon: Oxford, 1995).

    Google Scholar 

  8. R. K. Mishra, Y.-T. Lin, and S.-L. Lee, “Growth mechanism of C28(Td) fullerene: Energetics and 28transition-state structures analysis,” Chem. Phys. Lett. 313, 437–444 (1999).

    Article  CAS  Google Scholar 

  9. R. A. Harris and L. M. Falicov, “Self-Consistent theory of bond alternation in polyenes: Normal state, charge-density waves, and spin-density waves,” J. Chem. Phys. 51, 5034–5041 (1969).

    Article  CAS  Google Scholar 

  10. A. V. Silant’ev, “The energy spectrum and the optical absorption spectrum of C60 fullerene within the Hubbard model,” J. Exp. Theor. Phys. 121, 653–660 (2015).

    Article  Google Scholar 

  11. G. S. Ivanchenko and N. G. Lebedev, “Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model,” Phys. Solid State 49, 189–196 (2007).

    Article  CAS  Google Scholar 

  12. A. V. Silant’ev, “The study of nanosystems in the Hubbard model in the mean field approximation,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 101–112 (2016).

    Google Scholar 

  13. A. V. Silant’ev, “Energy spectrum and optical properties of C60 fullerene within the Hubbard model,” Phys. Met. Metallogr. 118, 1–9 (2017).

    Article  Google Scholar 

  14. A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C70 within the Hubbard model,” Opt. Spectrosc. 124, 155–162 (2018).

    Article  Google Scholar 

  15. A. V. Silant’ev, “Influence of deformation on the energy spectrum and the optical properties of fullerene C20 within the Hubbard model,” Phys. Met. Metallogr. 119, 511–519 (2018).

    Article  Google Scholar 

  16. A. V. Silant’ev, “A dimer in the extended Hubbard model,” Izvestiya Vuzov. Fizika. Russ. Phys. J. 57, 1491–1502 (2015).

    Google Scholar 

  17. A. V. Silant’ev, “A dimer in Hubbard model,” Izvestiya Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 168–182 (2015).

    Google Scholar 

  18. A. V. Silant’ev, “Energetic spectrum and optical properties of C24 fullerene in Hubbard model,” Phys. Met. Metallogr. 121, 195–201 (2020).

    Article  Google Scholar 

  19. A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C36 within the Hubbard model,” Opt. Spectrosc. 127, 190–198 (2019).

    Article  Google Scholar 

  20. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. London, Ser. A 276, 238–257 (1963).

    Article  Google Scholar 

  21. S. V. Tyablikov, Methods of Quantum Theory of Magnetism (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  22. I. G. Kaplan, Symmetry of Many-Electron Systems (Nauka, Moscow, 1969).

    Google Scholar 

  23. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  24. A. V. Eletskii, “Endohedral structures,” Phys.-Usp. 43, 111–137 (2000).

    Article  CAS  Google Scholar 

  25. E. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Preaa, 1959; IIL, Moscow, 1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. Energy Spectrum and Optical Properties of Fullerene C28 within the Hubbard Model. Phys. Metals Metallogr. 121, 501–507 (2020). https://doi.org/10.1134/S0031918X20060149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20060149

Keywords:

Navigation