Skip to main content
Log in

A Systematic Exploration of InGaN/GaN Quantum Well-Based Light Emitting Diodes on Semipolar Orientations

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Light-emitting diodes (LEDs) based on group III-nitride semiconductors (GaN, AlN, and InN) are crucial elements for solid-state lighting and visible light communication applications. The most widely used growth plane for group III-nitride LEDs is the polar plane (c-plane), which is characterized by the presence of a polarization-induced internal electric field in heterostructures. It is possible to address long-standing problems in group III-nitride LEDs, by using semipolar and nonpolar orientations of GaN. In addition to the reduction in the polarization-induced internal electric field, semipolar orientations potentially offer the possibility of higher indium incorporation, which is necessary for the emission of light in the visible range. This is the preferred growth orientation for green/yellow LEDs and lasers. The important properties such as high output power, narrow emission linewidth, robust temperature dependence, large optical polarization ratio, and low-efficiency droop are demonstrated with semipolar LEDs. To harness the advantages of semipolar orientations, comprehensive studies are required. This review presents the recent progress on the development of semipolar InGaN/GaN quantum well LEDs. Semipolar InGaN LED structures on bulk GaN substrates, sapphire substrates, free-standing GaN templates, and on Silicon substrates are discussed including the bright prospects of group III-nitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Elgala, R. Mesleh, and H. Haas, IEEE Commun. Mag. 49 (9), 56 (2011).

    Article  Google Scholar 

  2. G. C. García, I. L. Ruiz, and M. Á. G. Nieto, Sensors 16, 1968 (2016).

    Article  ADS  Google Scholar 

  3. C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, IEEE Commun. Mag. 52, 122 (2014).

    Article  Google Scholar 

  4. S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, Semicond. Sci. Technol. 32, 023001 (2017)

    Article  ADS  Google Scholar 

  5. J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, in Proceedings of the 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), Vol. 1, p. 165.

  6. S. Nakamura, Science (Washington, DC, U. S.) 281 (5379), 956 (1998).

    Article  Google Scholar 

  7. E. F. Schubert and J. K. Kim, Science (Washington, DC, U. S.) 308 (5726), 1274 (2005).

    Article  ADS  Google Scholar 

  8. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).

    Article  Google Scholar 

  9. B. Monemar, Phys. Rev. B 10, 676 (1974).

    Article  ADS  Google Scholar 

  10. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  ADS  Google Scholar 

  11. A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, J. Appl. Phys. 100, 023522 (2006).

    Article  ADS  Google Scholar 

  12. U. T. Schwarz and M. Kneissl, Phys. Status Solidi RRL 1 (3), A44 (2007).

    Article  ADS  Google Scholar 

  13. J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, IEEE J. Sel. Top. Quantum Electron. 15, 1080 (2009).

    Article  ADS  Google Scholar 

  14. H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, Appl. Phys. Express 6, 052102 (2013).

    Article  ADS  Google Scholar 

  15. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron Dev. 57, 88 (2010).

    Article  ADS  Google Scholar 

  16. R. M. Farrell, E. C. Young, F. Wu, S. P. Den Baars, and J. S. Speck, Semicond. Sci. Technol. 27, 024001 (2012).

    Article  ADS  Google Scholar 

  17. Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, Appl. Phys. Lett. 100, 201108 (2012).

    Article  ADS  Google Scholar 

  18. S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, Phys. Status Solidi C 11, 690 (2014).

    Article  ADS  Google Scholar 

  19. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 4, 082104 (2011).

    Article  ADS  Google Scholar 

  20. H. Zhong, A. Tyagi, N. N. Fellows, F. Wu, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 90, 233504 (2007).

    Article  ADS  Google Scholar 

  21. C.-C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, Appl. Phys. Express 5, 062103 (2012).

    Article  ADS  Google Scholar 

  22. Y. Zhao, J. Sonoda, C. C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 102101 (2010).

    Article  ADS  Google Scholar 

  23. A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, Jpn. J. Appl. Phys. 46, L129 (2007).

    Article  ADS  Google Scholar 

  24. D. L. Becerra, Y. Zhao, S. H. Oh, C. D. Pynn, K. Fujito, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 105, 171106 (2014).

    Article  ADS  Google Scholar 

  25. A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 109, 103522 (2011).

    Article  ADS  Google Scholar 

  26. M. Monavarian, S. Metzner, N. Izyumskaya, S. Okur, F. Zhang, N. Can, S. Das, V. Avrutin, Ü. Özgür, F. Bertram, J. Christen, and H. Morkoç, in Gallium Nitride Materials and Devices X, Proc. SPIE 9363, 93632 (2015).

    ADS  Google Scholar 

  27. J. E. Northrup and J. Neugebauer, Phys. Rev. B 60, R8473 (1999).

    Article  ADS  Google Scholar 

  28. Y. Zhao, Q. Yan, C. Y. Huang, S. C. Huang, P. Shan Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. van de Walle, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. Feezell, Appl. Phys. Lett. 100, 201108 (2012).

    Article  ADS  Google Scholar 

  29. M. Monavarian, S. Metzner, N. Izyumskaya, S. Okur, F. Zhang, N. Can, S. Das, V. Avrutin, U. Ozgür, F. Bertram, J. Christen, and H. Morkoç, Proc. SPIE 9363, 93632 (2015).

    ADS  Google Scholar 

  30. M. V. Durnev, A. V. Omelchenko, E. V. Yakovlev, I. Y. Evstratov, and S. Y. Karpov, Phys. Status Solidi A 208, 2671 (2011).

    Article  ADS  Google Scholar 

  31. S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamaura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 104, 111113 (2014).

    Article  ADS  Google Scholar 

  32. Y. Kawaguchi, C.-Y. Huang, Y.-R. Wu, Q. Yan, C.‑C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. van de Walle, S. P. DenBaars, and S. Nakamaura, Appl. Phys. Lett. 100, 231110 (2012).

    Article  ADS  Google Scholar 

  33. S.-H. Park and D. Ahn, J. Appl. Phys. 112, 093106 (2012).

    Article  ADS  Google Scholar 

  34. S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamaura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 103, 131116 (2013).

    Article  ADS  Google Scholar 

  35. Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 99, 051109 (2011).

    Article  ADS  Google Scholar 

  36. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamaura, and D. Feezell, Appl. Phys. Lett. 100, 201108 (2012).

    Article  ADS  Google Scholar 

  37. C.-Y. Huang, M. T. Hardy, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamaura, Appl. Phys. Lett. 99, 241115 (2011).

    Article  ADS  Google Scholar 

  38. C.-C. Pan, T. Gilbert, N. Pfaff, S. Tanaka, Y. Zhao, D. Feezell, J. S. Speck, S. Nakamura, and S. P. DenBaars, Appl. Phys. Express 5, 102103 (2012).

    Article  ADS  Google Scholar 

  39. S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, and S. P. DenBaars, Appl. Phys. Lett. 104, 111113 (2014).

    Article  ADS  Google Scholar 

  40. Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 6, 062102 (2013).

    Article  ADS  Google Scholar 

  41. F. Wu, Y. Zhao, A. E. Romanov, S. P. DenBaars, S. Nakamura, and J. S. Speck, Appl. Phys. Lett. 104, 151901 (2014).

    Article  ADS  Google Scholar 

  42. C.-C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, Appl. Phys. Express 5, 062103 (2012).

    Article  ADS  Google Scholar 

  43. S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, Appl. Phys. Express 9, 102102 (2016).

    Article  ADS  Google Scholar 

  44. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, J. Disp. Technol. 9, 190 (2013).

    Article  ADS  Google Scholar 

  45. E. Kioupakis, Q. Yan, and C. G. van de Walle, Appl. Phys. Lett. 101, 231107 (2012).

    Article  ADS  Google Scholar 

  46. E. Kioupakis, Q. Yan, D. Steiauf, and C. G. van de Walle, New J. Phys. 15, 125006 (2013).

    Article  ADS  Google Scholar 

  47. T. Melo, Y.-L. Hu, C. Weisbuch, M. C. Schmidt, A. David, B. Ellis, C. Poblenz, Y.-D. Lin, M. R. Krames, and J. W. Raring, Semicond. Sci. Technol. 27, 024015 (2012).

    Article  ADS  Google Scholar 

  48. M. Knab, M. Hocker, T. Felser, I. Tischer, J. Wang, F. Scholz, and K. Thonke, Phys. Status Solidi B 253, 126 (2016).

    Article  ADS  Google Scholar 

  49. A. Lotsari, A. Das, Th. Kehagias, Y. Kotsar, E. Monroy, Th. Karakostas, P. Gladkov, Ph. Komninou, and G. P. Dimitrakopulos, J. Cryst. Growth 339, 1 (2012).

    Article  ADS  Google Scholar 

  50. A. Das, S. Magalhaes, Y. Kotsar, P. K. Kandaswamy, B. Gayral, K. Lorenz, E. J. C. Alves, P. Ruterana, and E. Monroy, Appl. Phys. Lett. 96, 181907 (2010).

    Article  ADS  Google Scholar 

  51. A. Das, P. Sinha, Y. Kotsar, P. K. Kandaswamy, G. P. Dimitrakopulos, Th. Kehagias, Ph. Komninou, G. Nataf, P. de Mierry, and E. Monroy, J. Cryst. Growth 323, 161 (2011).

    Article  ADS  Google Scholar 

  52. A. Das, G. P. Dimitrakopulos, Y. Kotsar, A. Lotsari, Th. Kehagias, Ph. Komninou, and E. Monroy, Appl. Phys. Lett. 98, 201911 (2011).

    Article  ADS  Google Scholar 

  53. A. Lotsari, G. P. Dimitrakopulos, Th. Kehagias, A. Das, E. Monroy, and Ph. Komninou, Microelectron. Eng. 90, 108 (2012).

    Article  Google Scholar 

  54. T. Koukoula, A. Lotsari, Th. Kehagias, G. P. Dimitrakopulos, I. Häusler, A. Das, E. Monroy, Th. Karakostas, and Ph. Komninou, Appl. Surf. Sci. 260, 7 (2012).

    Article  ADS  Google Scholar 

  55. A. Das, L. Lahourcade, J. Pernot, S. Valdueza-Felip, P. Ruterana, A. Laufer, M. Eickhoff, and E. Monroy, Phys. Status Solidi C 7, 1913 (2010).

    Article  ADS  Google Scholar 

  56. E. Monroy, P. K. Kandaswamy, H. Machhadani, A. Wirthmüller, S. Sakr, L. Lahourcade, A. Das, M. Tchernycheva, P. Ruterana, and F. H. Julien, Proc. SPIE 7608, 76081G (2010).

    Article  ADS  Google Scholar 

  57. M. Khoury, M. Leroux, M. Nemoz, G. Feuillet, J. Zuniga-Perez, and P. Vennegues, J. Cryst. Growth 419, 88 (2015).

    Article  ADS  Google Scholar 

  58. F. Tendille, P. de Mierry, P. Vennegues, S. Chenot, and M. Teisseire, J. Cryst. Growth 404, 177 (2014).

    Article  ADS  Google Scholar 

  59. P. Vennegues, F. Tendille, and P. de Mierry, J. Phys. D: Appl. Phys. 48, 325103 (2015).

    Article  Google Scholar 

  60. J. Song, J. Choi, K. Xiong, Y. Xie, J. J. Cha, and J. Han, ACS Appl. Mater. Interfaces 9, 14088 (2017).

    Article  Google Scholar 

  61. H. Sato, A. Tyagi, H. Zhong, N. Fellows, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Phys. Status Solidi RRL 1, 162 (2007).

    Article  Google Scholar 

  62. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, Jpn. J. Appl. Phys. 45, 659 (2006).

    Article  ADS  Google Scholar 

  63. H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 92, 221110 (2008).

    Article  ADS  Google Scholar 

  64. H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. A. Samsudin, P. D. Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, ACS Appl. Mater. Interfaces 9, 36417 (2017).

    Article  Google Scholar 

  65. S. Jung, K. R. Song, S. N. Lee, and H. Kim, Adv. Mater. 25, 4470 (2013).

    Article  Google Scholar 

  66. K. W. Kim, N. J. Choi, K. B. Kim, M. Kim, and S. N. Lee, J. Alloys Compd. 666, 88 (2016).

    Article  Google Scholar 

  67. R. Southern-Holland, M. Halsall, T. Wang, and Y. Gong, Phys. Status Solidi C. 13, 274 (2016).

    Article  ADS  Google Scholar 

  68. D. S. Oh, J. J. Jang, O. Nam, K. M. Song, and S. N. Lee, J. Cryst. Growth 326, 33 (2011).

    Article  ADS  Google Scholar 

  69. C. Brasser, J. Bruckbauer, Y. Gong, L. Jiu, J. Bai, M. Warzecha, P. R. Edwards, T. Wang, and R. W. Martin, J. Appl. Phys. 123, 174502 (2018).

    Article  ADS  Google Scholar 

  70. Z. Wu, S. Lu, P. Yang, P. Tian, L. Hu, R. Liu, J. Kang, and Z. Fang, Cryst. Eng. Commun. 21, 244 (2019).

    Article  Google Scholar 

  71. S. Lee, J. Jang, K. H. Lee, J. H. Hwang, J. Jeong, and O. Nam, Phys. Status Solidi A 209, 1526 (2012).

    Article  ADS  Google Scholar 

  72. S. N. Lee, J. Kim, and H. Kim, J. Electrochem. Soc. 158, 994 (2011).

    Article  Google Scholar 

  73. F. Tendille, M. Hugues, P. Vennegues, M. Tesseire, and P. D. Mierry, Semicond. Sci. Technol. 30, 065001 (2015).

    Article  ADS  Google Scholar 

  74. J. Jeong, J. J. Jang, J. Hwang, C. Jung, J. Kim, K. Lee, H. Lim, and O. Nam, J. Cryst. Growth 370, 114 (2013).

    Article  ADS  Google Scholar 

  75. T. Wernicke, C. Netzel, M. Weyers, and M. Kneissl, Phys. Status Solidi C 5, 1815 (2008).

    Article  ADS  Google Scholar 

  76. Q. Sun, B. Leung, C. D. Yerino, Y. Zhang, and J. Han, Appl. Phys. Lett. 95, 231904 (2009).

    Article  ADS  Google Scholar 

  77. N. Kriouche, P. Vennegues, M. Nemoz, G. Nataf, and P. de Mierry, J. Cryst. Growth 312, 2625 (2010).

    Article  ADS  Google Scholar 

  78. P. de Mierry, N. Kriouche, M. Nemoz, S. Chenot, and G. Nataf, Appl. Phys. Lett. 96, 231918 (2010).

    Article  ADS  Google Scholar 

  79. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314 (2008).

    Article  ADS  Google Scholar 

  80. X.-F. Li, S.-W. Huang, H.-Y. Lin, C.-Y. Lu, S.‑F. Yang, C.-C. Sun, and C.-Y. Liu, Opt. Mater. Express 5, 1784 (2015).

    Article  ADS  Google Scholar 

  81. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).

    Article  Google Scholar 

  82. N. Okada, K. Uchida, S. Miyoshi, and K. Tadatomo, Phys. Status Solidi A 209, 469 (2012).

    Article  ADS  Google Scholar 

  83. B. Leung, Y. Zhang, C. D. Yerino, J. Han, Q. Sun, Z. Chen, S. Lester, K. Y. Liao, and Y. L. Li, Semicond. Sci. Technol. 27, 024016 (2012).

    Article  ADS  Google Scholar 

  84. F. Brunner, U. Zeimer, F. Edokam, W. John, D. Prasai, O. Krüger, and M. Weyers, Phys. Status Solidi B 252, 1189 (2015).

    Article  ADS  Google Scholar 

  85. N. Okada, A. Kurisu, K. Murakami, and K. Tadatomo, Appl. Phys. Express 2, 091001 (2009).

    Article  ADS  Google Scholar 

  86. D. Hanser, M. Tutor, E. Preble, M. Williams, X. Xu, D. Tsvetkov, and L. Liu, J. Cryst. Growth 305, 372 (2007).

    Article  ADS  Google Scholar 

  87. D. V. Dinh, M. Akhter, S. Presa, G. Kozlowski, D. O’Mahony, P. P. Maaskant, F. Brunner, M. Caliebe, M. Weyers, F. Scholz, B. Corbett, and P. J. Parbrook, Phys. Status Solidi A 212, 2196 (2015).

    Article  ADS  Google Scholar 

  88. M. Khoury, H. Li, B. Bonef, L. Y. Kuritzky, A. J. Mughal, S. Nakamura, J. S. Speck, and S. P. DenBaars, Appl. Phys. Express 11, 036501 (2018).

    Article  ADS  Google Scholar 

  89. B. Leung, D. Wang, Y. S. Kuo, and J. Han, Phys. Status Solidi B 253, 23 (2016).

    Article  ADS  Google Scholar 

  90. T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 73, 487 (1998).

    Article  ADS  Google Scholar 

  91. B. Leung, D. Wang, Y.-S. Kuo, and J. Han, Phys. Status Solidi B 253, 23 (2016).

    Article  ADS  Google Scholar 

  92. X. Wang, S. Li, S. Fündling, J. Wei, M. Erenburg, H.‑H. Wehmann, A. Waag, W. Bergbauer, M. Strassburg, U. Jahn, and H. Riechert, Cryst. Growth Des. 12, 2552 (2012).

    Article  Google Scholar 

  93. J. Song, G. Yuan, K. Xiong, B. Leung, and J. Han, Cryst. Growth Des. 14, 2510 (2014).

    Article  Google Scholar 

  94. J. Song, J. Choi, K. Xiong, Y. Xie, J. J. Cha, and J. Han, ACS Appl. Mater. Interfaces 9, 14088 (2017).

    Article  Google Scholar 

  95. S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, and H.-C. Kuo, Photon. Res. 8, 630 (2020).

    Article  Google Scholar 

  96. D. V. Dinh, B. Corbett, P. J. Parbrook, I. L. Koslow, M. Rychetsky, M. Guttmann, T. Wernicke, M. Kneissl, C. Mounir, U. Schwarz, J. Glaab, C. Netzel, F. Brunner, and M. Weyers, J. Appl. Phys. 120, 135701 (2016).

    Article  ADS  Google Scholar 

  97. D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, Opt. Lett. 41, 5752 (2016).

    Article  ADS  Google Scholar 

  98. Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, IEEE Photon. J. 8, 1601808 (2016).

    Article  Google Scholar 

  99. M. Khoury, H. Li, L. Y. Kuritzky, A. J. Mughal, P. DeMierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, Appl. Phys. Express 10, 106501 (2017).

    Article  ADS  Google Scholar 

  100. L. Wang, J. Jin, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, Phys. Status Solidi A 214, 1600810 (2017).

    Article  ADS  Google Scholar 

  101. K. R. Song, C. Y. Cho, and S. N. Lee, Thin Solid Films 707, 138077 (2020).

    Article  ADS  Google Scholar 

  102. M. Funato, T. Kotani, T. Kondou, and Y. Kawakami, Appl. Phys. Lett. 100, 162107 (2012).

    Article  ADS  Google Scholar 

  103. L. H. Zhu, F. M. Zeng, W. Liu, Z. C. Feng, B. L. Liu, Y. J. Lu, Y. L. Gao, and Z. Chen, IEEE Trans. Electron Dev. 60, 3753 (2013).

    Article  ADS  Google Scholar 

  104. A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259 (1997).

    Article  ADS  Google Scholar 

  105. J. Hertkorn, P. Brückner, S. B. Thapa, T. Wunderer, F. Scholz, M. Feneberg, K. Thonke, R. Sauer, M. Beer, and J. Zweck, J. Cryst. Growth 308, 30 (2007).

    Article  ADS  Google Scholar 

  106. B. Neubert, T. Wunderer, P. Brückner, F. Scholz, M. Feneberg, F. Lipski, M. Schirra, and K. Thonke, J. Cryst. Growth 298, 706 (2007).

    Article  ADS  Google Scholar 

  107. M. Funato, K. Hayashi, M. Ueda, Y. Kawakami, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 93, 021126 (2008).

    Article  ADS  Google Scholar 

  108. C. Y. Cho, I. K. Park, M. K. Kwon, J. Y. Kim, S. J. Park, D. R. Jung, and K. W. Kwon, Appl. Phys. Lett. 93, 241109 (2008).

    Article  ADS  Google Scholar 

  109. S. Y. Bae, D. H. Kim, D. S. Lee, S. J. Lee, and J. H. Baek, Electrochem. Solid-State Lett. 15, H47 (2011).

    Article  Google Scholar 

  110. T. Wunderer, J. Wang, F. Lipski, S. Schwaiger, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, S. S. Shirokov, A. E. Yunovich, and F. Scholz, Phys. Status Solidi C 7, 2140 (2010).

    Article  ADS  Google Scholar 

  111. R. A. R. Leute, J. Wang, T. Meisch, J. Biskupek, U. Kaiser, and F. Scholz, Phys. Status Solidi C 12, 376 (2015).

    Article  ADS  Google Scholar 

  112. F. Zeng, L. Zhu, W. Liu, X. Li, W. Liu, B. J. Chen, Y. C. Lee, Z. Feng, and B. Liu, J. Alloys Compd. 656, 881 (2016).

    Article  Google Scholar 

  113. A. K. Rishinaramangalam, M. Nami, M. N. Fairchild, D. M. Shima, G. Balakrishnan, S. R. J. Brueck, and D. F. Feezell, Appl. Phys. Express 9, 059201 (2016).

    Article  ADS  Google Scholar 

  114. J. Jongjin, L. Kyuseung, M. Daehong, K. Jaehwan, C. Sooryong, L. Gyungbae, and N. Okhyun, J. Nanosci. Nanotechnol. 16, 10881 (2016).

    Article  Google Scholar 

  115. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London, U.K.) 406, 865 (2000).

    Article  ADS  Google Scholar 

  116. Q. Sun, B. Leung, C. D. Yerino, Y. Zhang, and J. Han, Appl. Phys. Lett. 95, 231904 (2009).

    Article  ADS  Google Scholar 

  117. Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, and K. H. Ploog, J. Appl. Phys. 92, 5714 (2002).

    Article  ADS  Google Scholar 

  118. K.-C. Kim, M. C. Schmidt, F. Wu, M. B. McLaurin, A. Hirai, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 93, 142108 (2008).

    Article  ADS  Google Scholar 

  119. Y. S. Cho, Q. Sun, I.-H. Lee, T.-S. Ko, C. D. Yerino, J. Han, B. H. Kong, H. K. Cho, and S. Wang, Appl. Phys. Lett. 93, 111904 (2008).

    Article  ADS  Google Scholar 

  120. J. Song, J. Choi, C. Zhang, Z. Deng, Y. Xie, and J. Han, ACS Appl. Mater. Interfaces 11, 33140 (2019).

    Article  Google Scholar 

  121. J. Song, J. Choi, and J. Han, J. Cryst. Growth 536, 125575 (2020).

    Article  Google Scholar 

  122. G. Zhao, L. Wang, H. Li, Y. Meng, F. Li, S. Yang, and Z. Wang, Appl. Phys. Lett. 112, 052105 (2018).

    Article  ADS  Google Scholar 

  123. G. J. Jeong, H. D. Yoo, K. K. Kim, and S. N. Lee, J. Vac. Sci. Technol. B 33, 051205 (2015).

    Article  Google Scholar 

  124. S. Liu, X. Li, X. Yu, Z. Chang, P. Che, J. Zhou, and W. Li, J. Alloys Compd. 655, 203 (2016).

    Article  Google Scholar 

  125. J. Park, D. S. Shin, and D. H. Kim, J. Alloys Compd. 611, 157 (2014).

    Article  Google Scholar 

  126. J. O. Song, D. S. Leem, J. S. Kwak, Y. Park, S. W. Chae, and T. Y. Seong, IEEE Photon. Technol. Lett. 17, 291 (2005).

    Article  ADS  Google Scholar 

  127. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon. Technol. Lett. 15, 646 (2003).

    Article  ADS  Google Scholar 

  128. K. W. Kim, N. J. Choi, K. B. Kim, M. Kim, and S. N. Lee, J. Alloys Compd. 666, 88 (2016).

    Article  Google Scholar 

  129. J. Song, J. Choi, C. Zhang, Z. Deng, Y. Xie, and J. Han, ACS Appl. Mater. Interfaces 11, 33140 (2019).

    Article  Google Scholar 

  130. M. Huang and L. Yang, IEEE Photon. Technol. Lett. 25, 1317 (2013).

    Article  ADS  Google Scholar 

  131. J.-H. Hwang, Y. D. Kim, J.-W. Kim, S.-J. Jung, H.‑K. Kwon, and T.-H. Oh, Phys. Status Solidi C 7, 2157 (2010).

    Article  ADS  Google Scholar 

  132. T. Tamura, T. Setomoto, and T. Taguchi, J. Lumin. 87, 1180 (2000).

    Article  Google Scholar 

  133. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, Adv. Mater. 22, 602 (2010).

    Article  Google Scholar 

  134. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature (London, U.K.) 429, 642 (2004).

    Article  ADS  Google Scholar 

  135. G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, Nanotechnology 20, 275207 (2009).

    Article  ADS  Google Scholar 

  136. M. Athanasiou, R. M. Smith, S. Ghataora, and T. Wang, Sci. Rep. 7, 39677 (2017).

    Article  ADS  Google Scholar 

  137. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, Adv. Mater. 18, 334 (2006).

    Article  Google Scholar 

  138. R. M. Smith, M. Athanasiou, J. Bai, B. Liu, and T. Wang, Appl. Phys. Lett. 10, 121108 (2015).

    Article  ADS  Google Scholar 

  139. N. Poyiatzis, M. Athanasiou, J. Bai, Y. Gong, and T. Wang, Sci. Rep. 9, 1383 (2019).

    Article  ADS  Google Scholar 

  140. M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, Nano Energy 67, 104236 (2020).

    Article  Google Scholar 

  141. B. Leung, D. Wang, Y. S. Kuo, K. Xiong, J. Song, D. Chen, S. H. Park, S. Y. Hong, J. W. Choi, and J. Han, Appl. Phys. Lett. 104, 262105 (2014).

    Article  ADS  Google Scholar 

  142. S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, Appl. Phys. Express 9, 102102 (2016).

    Article  ADS  Google Scholar 

  143. S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, Opt. Express 25, 2178 (2017).

    Article  ADS  Google Scholar 

  144. M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, Appl. Phys. Lett. 112, 191102 (2018).

    Article  ADS  Google Scholar 

  145. M. Monavarian, A. Rashidi, A. Arago, S. H. Oh, M. Nami, S. P. DenBaars, and D. Feezell, Opt. Express 25, 19343 (2017).

    Article  ADS  Google Scholar 

  146. A. Krost and A. Dadgar, Phys. Status Solidi A 194, 361 (2002).

    Article  ADS  Google Scholar 

  147. A. Krost, A. Dadgar, G. Strassburger, and R. Clos, Phys. Status Solidi A 200, 26 (2003).

    Article  ADS  Google Scholar 

  148. H. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. Phys. Lett. 80, 222 (2002).

    Article  ADS  Google Scholar 

  149. C. Long, P. Justin, S. Jan, L. Cheng, Z. Jian-Ming, Y. Wen-Jie, D. Zeng-Feng, and W. Xi, Chin. Phys. B 24, 118102 (2015).

    Article  ADS  Google Scholar 

  150. B. Reuters, J. Strate, A. Wille, M. Marx, G. Lükens, L. Heuken, M. Heuken, H. Kalisch, and A. Vescan, J. Phys. D: Appl. Phys. 48, 485103 (2015).

    Article  Google Scholar 

  151. F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, Mater. Today 10 (6), 20 (2007).

    Article  Google Scholar 

  152. L. Chen, J. Payne, J. Strate, C. Li, J. M. Zhang, W. J. Yu, Z. F. Di, and X. Wang, Chin. Phys. B 24, 118102 (2015).

    Article  ADS  Google Scholar 

  153. T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, Phys. Status Solidi C 5, 2234 (2008).

    Article  ADS  Google Scholar 

  154. Q. Wang, G. D. Yuan, W. Q. Liu, S. Zhao, L. Zhang, Z. Q. Liu, J. X. Wang, and J. M. Li, Chin. Phys. B 28, 087802 (2019).

    Article  ADS  Google Scholar 

  155. Q. Wang, G. Yuan, W. Liu, S. Zhao, Z. Liu, Y. Chen, J. Wang, and J. Li, J. Mater. Sci. 54, 7780 (2019).

    Article  ADS  Google Scholar 

  156. S. Shen, X. Zhao, X. Yu, C. Zhu, J. Bai, and T. Wang, Phys. Status Solidi A 217, 1900654 (2020).

    Article  ADS  Google Scholar 

  157. X. Luo, W. Song, H. Wang, Y. Sun, B. Zhang, L. Wang, J. Guo, L. He, K. Zhang, and S. Li, J. Lumin. 221, 117014 (2020).

    Article  Google Scholar 

  158. N. Hafiz, N. Andrade, M. Monavarian, N. Izyumskaya, S. Das, F. Zhang, V. Avrutin, H. Morkoç, and U. Özgür, in Gallium Nitride Materials and Devices XI, Proc. SPIE 9748, 974828 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

AD is grateful to Prince Mohammad Bin Fahd University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Das.

Ethics declarations

The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. A Systematic Exploration of InGaN/GaN Quantum Well-Based Light Emitting Diodes on Semipolar Orientations. Opt. Spectrosc. 130, 137–149 (2022). https://doi.org/10.1134/S0030400X2203002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2203002X

Keywords:

Navigation