Skip to main content

Growth and Optical Properties of GaN-Based Non- and Semipolar LEDs

  • Chapter
III-Nitride Based Light Emitting Diodes and Applications

Part of the book series: Topics in Applied Physics ((TAP,volume 126))

Abstract

Light emitting diodes (LEDs) based on the (In,Al,Ga)N material system offer the possibility to generate light in the entire visible wavelength range, extending into the ultraviolet and the infrared regions. The widely tunable bandgap makes nitride based LEDs suitable devices for applications such as general energy efficient lighting, water purification, UV curing and medical applications. Conventionally, all group III-nitride based devices have been grown epitaxially on the polar (0001) c-plane of the wurtzite crystal structure. This leads to the formation of strong polarization fields pointing along the [0001] c-axis. These fields reduce the device efficiency through the quantum confined Stark effect (QCSE) and also cause other detrimental effects like wavelength-shifts and efficiency droop with increasing current densities. By growing InAlGaN heterostructures on non- and semipolar growth planes, these fields can be significantly reduced or even eliminated. In addition, due to the reduction of in-plane symmetry, a number of new heterostructure design options emerge to control the optoelectronic properties of non- and semipolar light emitters. Among these are the occurrence of anisotropic strain with the consequence of an anisotropic valence band structure and the possibility to generate strongly polarized light emission from LEDs. In this chapter we will discuss the origin of the polarization fields in III-nitrides and their control by growth on non- and semipolar crystal planes. Different approaches for the homo- and heteroepitaxial growth of non- and semipolar nitride heterostructures as well as structural properties, such as surface morphologies and indium incorporation efficiencies will be discussed. The influence of the crystal plane and the indium content on the valence band structure and the polarization state of the emitted light will be presented and the state-of-the-art device characteristics of non- and semipolar LEDs will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−x Al x N (0<x≤0.4) films grown on sapphire substrate by MOVPE. J. Cryst. Growth 98(1–2), 209–219 (1989)

    ADS  Google Scholar 

  2. I. Akasaki, H. Amano, Breakthroughs in improving crystal quality of GaN and invention of the pn junction blue-light-emitting diode. Jpn. J. Appl. Phys. 45(12), 9001–9010 (2006)

    ADS  Google Scholar 

  3. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64(13), 1687 (1994)

    ADS  Google Scholar 

  4. S. Nakamura, M. Senoh, N. Iwasa, S.-i. Nagahama, High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. 34(7), L797–L799 (1995)

    ADS  Google Scholar 

  5. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)

    ADS  Google Scholar 

  6. J. Han, M. Kneissl, Non-polar and semipolar nitride semiconductors. Semicond. Sci. Technol. 27(2), 020301 (2012)

    ADS  Google Scholar 

  7. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 56(16), 10024–10027 (1997)

    ADS  Google Scholar 

  8. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L. Eastman, Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14, 3399–3434 (2002)

    ADS  Google Scholar 

  9. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222 (1999)

    ADS  Google Scholar 

  10. D.S. Sizov, R. Bhat, A. Zakharian, J. Napierala, K. Song, D. Allen, C.-E. Zah, Impact of carrier transport on aquamarine-green laser performance. Appl. Phys. Express 3(12), 122101 (2010)

    ADS  Google Scholar 

  11. D.S. Sizov, R. Bhat, A. Zakharian, K. Song, D.E. Allen, S. Coleman, C.-E. Zah, Carrier transport in InGaN MQWs of aquamarine- and green-laser diodes. IEEE J. Sel. Top. Quantum Electron. 17(5), 1390–1401 (2011)

    Google Scholar 

  12. W.G. Scheibenzuber, GaN-Baser Laser Diodes—Towards Longer Wavelengths and Short Pulses (Springer, Heidelberg, 2012)

    Google Scholar 

  13. S.H. Park, S.L. Chuang, Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 59(7), 4725–4737 (1999)

    ADS  Google Scholar 

  14. M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, F. Scholz, Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets. Appl. Phys. Lett. 89(24), 242112 (2006)

    ADS  Google Scholar 

  15. M. Feneberg, K. Thonke, T. Wunderer, F. Lipski, F. Scholz, Piezoelectric polarization of semipolar and polar GaInN quantum wells grown on strained GaN templates. J. Appl. Phys. 107(10), 103517 (2010)

    ADS  Google Scholar 

  16. M. Funato, M. Ueda, D. Inoue, Y. Kawakami, Y. Narukawa, T. Mukai, Experimental and theoretical considerations of polarization field direction in semipolar InGaN/GaN quantum wells. Appl. Phys. Express 3(7), 071001 (2010)

    ADS  Google Scholar 

  17. T. Paskova, K.R. Evans, GaN substrates—progress, status, and prospects. IEEE J. Sel. Top. Quantum Electron. 15(4), 1041–1052 (2009)

    Google Scholar 

  18. K. Fujito, S. Kubo, I. Fujimura, Development of bulk GaN crystals and nonpolar/semipolar substrates by HVPE. Mater. Res. Soc. Bull. 34, 313–317 (2009)

    Google Scholar 

  19. K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitu, H. Seki, Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn. J. Appl. Phys., Part 2 40(2B), L140–L143 (2001)

    Google Scholar 

  20. K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, H. Seki, Growth and characterization of freestanding GaN substrates. J. Cryst. Growth, Part 2 237–239, 912–921 (2002). The Thirteenth International Conference on Crystal Growth in Conjunction with the Eleventh International Conference on Vapor Growth and Epitaxy

    Google Scholar 

  21. R. Kucharski, M. Zajac, R. Doradzinski, M. Rudzinski, R. Kudrawiec, R. Dwilinski, Non-polar and semi-polar ammonothermal GaN substrates. Semicond. Sci. Technol. 27(2), 024007 (2012)

    ADS  Google Scholar 

  22. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S.P. DenBaars, Structural characterization of nonpolar \((11\overline{2}0)\) a-plane GaN thin films grown on \((1\overline{1}02)\) r-plane sapphire. Appl. Phys. Lett. 81(3), 469–471 (2002)

    ADS  Google Scholar 

  23. M.D. Craven, F. Wu, A. Chakraborty, B. Imer, U.K. Mishra, S.P. DenBaars, J.S. Speck, Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84(8), 1281–1283 (2004)

    ADS  Google Scholar 

  24. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on spinel substrates. Jpn. J. Appl. Phys. 44(29), 920–922 (2005)

    ADS  Google Scholar 

  25. T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on sapphire substrates. Jpn. J. Appl. Phys. 45(6), L154–L157 (2006)

    ADS  Google Scholar 

  26. S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, M. Kneissl, Orientation control of GaN \(\{11\overline{2}2\}\) and \(\{10\overline{1}3\}\) grown on \((10\overline{1}0)\) sapphire by metal-organic vapor phase epitaxy. J. Cryst. Growth 312(15), 2171–2174 (2010)

    ADS  Google Scholar 

  27. S. Ploch, J.B. Park, J. Stellmach, T. Schwaner, M. Frentrup, T. Niermann, T. Wernicke, M. Pristovsek, M. Lehmann, M. Kneissl, Single phase \(\{11\overline{2}2\}\) GaN on \((10\overline{1}0)\) sapphire grown by metal-organic vapor phase epitaxy. J. Cryst. Growth 331(1), 25–28 (2011)

    ADS  Google Scholar 

  28. N. Okada, K. Tadatomo, Characterization and growth mechanism of nonpolar and semipolar GaN layers grown on patterned sapphire substrates. Semicond. Sci. Technol. 27(2), 024003 (2012)

    ADS  Google Scholar 

  29. N. Okada, H. Oshita, K. Yamane, K. Tadatomo, High-quality \(\{20\overline{2}1\}\) GaN layers on patterned sapphire substrate with wide-terrace. Appl. Phys. Lett. 99(24), 242103 (2011)

    ADS  Google Scholar 

  30. T. Kato, Y. Honda, M. Yamaguchi, N. Sawaki, Fabrication of GaN/AlGaN heterostructures on a (111) Si substrate by selective MOVPE. J. Cryst. Growth, Part 2 237–239, 1099–1103 (2002). The Thirteenth International Conference on Crystal Growth in Conjunction with the Eleventh International Conference on Vapor Growth and Epitaxy

    Google Scholar 

  31. N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, M. Yamaguchi, Growth and properties of semi-polar GaN on a patterned silicon substrate. J. Cryst. Growth 311(10), 2867–2874 (2009)

    ADS  Google Scholar 

  32. R. Ravash, P. Veit, M. Müller, G. Schmidt, A. Dempewolf, T. Hempel, J. Bläsing, F. Bertram, A. Dadgar, J. Christen, A. Krost, Growth and stacking fault reduction in semi-polar GaN films on planar Si(112) and Si(113). Phys. Status Solidi C 9(3–4), 507–510 (2012)

    ADS  Google Scholar 

  33. T. Wernicke, Wachstum von nicht- und semipolaren InAlGaN-Heterostrukturen für hocheffiziente Lichtemitter/Growth of GaN-based non- and semipolar heterostructures for high efficiency light emitters. Dissertation, Technische Universität Berlin (2010)

    Google Scholar 

  34. T. Wernicke, S. Ploch, V. Hoffmann, A. Knauer, M. Weyers, M. Kneissl, Surface morphology of homoepitaxial GaN grown on non- and semipolar GaN substrates. Phys. Status Solidi B 248(3), 574–577 (2011)

    ADS  Google Scholar 

  35. S. Ploch, T. Wernicke, D.V. Dinh, M. Pristovsek, M. Kneissl, Surface diffusion and layer morphology of \((11\overline{2}2)\) GaN grown by metal-organic vapor phase epitaxy. J. Appl. Phys. 111(3), 033526 (2012)

    ADS  Google Scholar 

  36. R.M. Farrell, E.C. Young, F. Wu, S.P. DenBaars, J.S. Speck, Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semicond. Sci. Technol. 27(2), 024001 (2012)

    ADS  Google Scholar 

  37. T.S. Zheleva, O.-H. Nam, M.D. Bremser, R.F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 71(17), 2472–2474 (1997)

    ADS  Google Scholar 

  38. T. Wernicke, U. Zeimer, C. Netzel, F. Brunner, A. Knauer, M. Weyers, M. Kneissl, Epitaxial lateral overgrowth on \((2\overline{11}0)\) a-plane GaN with \([0\overline{1}11]\)-oriented stripes. J. Cryst. Growth 311(10), 2895–2898 (2009). Proceedings of the 2nd International Symposium on Growth of III Nitrides

    ADS  Google Scholar 

  39. C. Netzel, T. Wernicke, U. Zeimer, F. Brunner, M. Weyers, M. Kneissl, Near band edge and defect emissions from epitaxial lateral overgrown a-plane GaN with different stripe orientations. J. Cryst. Growth 310(1), 8–12 (2008)

    ADS  Google Scholar 

  40. B. Bastek, F. Bertram, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, a-plane GaN epitaxial lateral overgrowth structures: growth domains, morphological defects, and impurity incorporation directly imaged by cathodoluminescence microscopy. Appl. Phys. Lett. 92(21), 212111 (2008)

    ADS  Google Scholar 

  41. Z.H. Wu, A.M. Fischer, F.A. Ponce, B. Bastek, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, Structural and optical properties of nonpolar GaN thin films. Appl. Phys. Lett. 92(17), 171904 (2008)

    ADS  Google Scholar 

  42. Y. Kawashima, K. Murakami, Y. Abe, N. Okada, K. Tadatomo, Growth mechanism of nonpolar m-plane GaN on maskless patterned a-plane sapphire substrate. Phys. Status Solidi C 7(7–8), 2066–2068 (2010)

    ADS  Google Scholar 

  43. A. Dadgar, R. Ravash, P. Veit, G. Schmidt, M. Müller, A. Dempewolf, F. Bertram, M. Wieneke, J. Christen, A. Krost, Eliminating stacking faults in semi-polar GaN by AlN interlayers. Appl. Phys. Lett. 99(2), 021905 (2011)

    ADS  Google Scholar 

  44. F. Scholz, Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27(2), 024002 (2012)

    MathSciNet  ADS  Google Scholar 

  45. J.E. Northrup, GaN and InGaN \((11\overline{2}2)\) surfaces: group-III adlayers and indium incorporation. Appl. Phys. Lett. 95(13), 133107 (2009)

    ADS  Google Scholar 

  46. T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U.T. Schwarz, M. Kneissl, Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 27(2), 024014 (2012)

    ADS  Google Scholar 

  47. N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, M.R. Krames, Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes. Appl. Phys. Lett., 3–5 (2005)

    Google Scholar 

  48. H. Masui, H. Yamada, K. Iso, S. Nakamura, S.P. DenBaars, Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between \((10\overline {1}0)\) and \((10\overline{11})\) planes. Appl. Phys. Lett. 92(9), 091105 (2008)

    ADS  Google Scholar 

  49. L. Schade, U.T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, M. Kneissl, On the optical polarization properties of semipolar InGaN quantum wells. Appl. Phys. Lett. 99(5), 051103 (2011)

    ADS  Google Scholar 

  50. H. Jönen, H. Bremers, T. Langer, U. Rossow, A. Hangleiter, Large optical polarization anisotropy due to anisotropic in-plane strain in m-plane GaInN quantum well structures grown on m-plane 6H-SiC. Appl. Phys. Lett. 100(15), 151905 (2012)

    ADS  Google Scholar 

  51. M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, T. Mukai, Polarization switching phenomena in semipolar In x Ga1−x N/GaN quantum well active layers. Phys. Rev. B 78(23), 2–5 (2008)

    Google Scholar 

  52. S. Chuang, C. Chang, kp method for strained wurtzite semiconductors. Phys. Rev. B 54(4), 2491–2504 (1996)

    ADS  Google Scholar 

  53. W. Scheibenzuber, U.T. Schwarz, R. Veprek, B. Witzigmann, A. Hangleiter, Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes. Phys. Rev. B 80(11), 115320 (2009)

    ADS  Google Scholar 

  54. K. Kojima, H. Kamon, M. Funato, Y. Kawakami, Theoretical investigations on anisotropic optical properties in semipolar and nonpolar InGaN quantum wells. Phys. Status Solidi C 5(9), 3038–3041 (2008)

    ADS  Google Scholar 

  55. L. Schade, U.T. Schwarz, T. Wernicke, M. Weyers, M. Kneissl, Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells. Phys. Status Solidi B 248(3), 638–646 (2011)

    ADS  Google Scholar 

  56. T. Ohtoshi, A. Niwa, T. Kuroda, Crystal orientation effect on valence-subband structures in wurtzite-GaN strained quantum wells. Jpn. J. Appl. Phys. Lett., Part 2 35, 1566–1568 (1996)

    Google Scholar 

  57. L. Schade, U.T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, M. Kneissl, Auger effect in nonpolar quantum wells. Proc. SPIE 8262, 82620K-82620K-9 (2012)

    ADS  Google Scholar 

  58. H. Masui, H. Asamizu, A. Tyagi, N.F. DeMille, S. Nakamura, S.P. DenBaars, Correlation between optical polarization and luminescence morphology of \((11\overline{2}2)\)-oriented InGaN/GaN quantum-well structures. Appl. Phys. Express 2, 071002 (2009)

    ADS  Google Scholar 

  59. W.G. Scheibenzuber, U.T. Schwarz, Polarization switching of the optical gain in semipolar InGaN quantum wells. Phys. Status Solidi B 248(3), 647–651 (2011)

    ADS  Google Scholar 

  60. C. Roberts, Q. Yan, M.-S. Miao, C.G. Van de Walle, Confinement effects on valence-subband character and polarization anisotropy in \((11\overline{2}2)\) semipolar InGaN/GaN quantum wells. J. Appl. Phys. 111(7), 073113 (2012)

    ADS  Google Scholar 

  61. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, Strain-induced polarization in wurtzite III-nitride semipolar layers. J. Appl. Phys. 100(2), 023522 (2006)

    ADS  Google Scholar 

  62. M. Funato, D. Inoue, M. Ueda, Y. Kawakami, Y. Narukawa, T. Mukai, Strain states in semipolar III-nitride semiconductor quantum wells. J. Appl. Phys. 107(12), 123501 (2010)

    ADS  Google Scholar 

  63. Q. Yan, P. Rinke, M. Scheffler, C.G. Van de Walle, Role of strain in polarization switching in semipolar InGaN/GaN quantum wells. Appl. Phys. Lett. 97(18), 181102 (2010)

    ADS  Google Scholar 

  64. T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, T. Nakamura, Optical polarization characteristics of InGaN quantum wells for green laser diodes on semi-polar \(\{20\overline{2}1\}\) GaN substrates. Appl. Phys. Express 3(1), 011003 (2010)

    ADS  Google Scholar 

  65. Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R.B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C.G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, High optical polarization ratio from semipolar \((20\overline{21})\) blue-green InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 99(5), 051109 (2011)

    ADS  Google Scholar 

  66. H. Masui, H. Yamada, K. Iso, S. Nakamura, S.P. DenBaars, Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure. J. Phys. D, Appl. Phys. 41(22), 225104 (2008)

    ADS  Google Scholar 

  67. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003)

    ADS  Google Scholar 

  68. E. Kuokstis, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, M.S. Shur, Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells. Appl. Phys. Lett. 80(6), 977–979 (2002)

    ADS  Google Scholar 

  69. M.C. Schmidt, K.-C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S.P. DenBaars, J.S. Speck, High power and high external efficiency m-plane InGaN light emitting diodes. Jpn. J. Appl. Phys. 46(7), 126–128 (2007)

    ADS  Google Scholar 

  70. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, High-power blue-violet semipolar (\(20\overline{21}\)) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2. Appl. Phys. Express 4(8), 082104 (2011)

    ADS  Google Scholar 

  71. J. Piprek, Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207(10), 2217–2225 (2010)

    ADS  Google Scholar 

  72. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007)

    ADS  Google Scholar 

  73. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91(18), 183507 (2007)

    ADS  Google Scholar 

  74. A. David, M.J. Grundmann, Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96(10), 103504 (2010)

    ADS  Google Scholar 

  75. J. Hader, J.V. Moloney, S.W. Koch, Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes. Appl. Phys. Lett. 96(22), 221106 (2010)

    ADS  Google Scholar 

  76. E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98(16), 161107 (2011)

    Google Scholar 

  77. A. David, M.J. Grundmann, Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light emitting diodes. Appl. Phys. Lett. 97, 033501 (2010)

    ADS  Google Scholar 

  78. E. Kioupakis, Q. Yan, C.G. Van de Walle, Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 101, 231107 (2012)

    ADS  Google Scholar 

  79. C.-C. Pan, S. Tanaka, F. Wu, Y. Zhao, J.S. Speck, S. Nakamura, S.P. DenBaars, D. Feezell, High-power, low-efficiency-droop semipolar (\(20\overline{21}\)) single-quantum-well blue light-emitting diodes. Appl. Phys. Express 5(6), 062103 (2012)

    ADS  Google Scholar 

  80. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3(2), 160–175 (2007)

    ADS  Google Scholar 

  81. A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn, High-power and high-efficiency InGaN-based light emitters. IEEE Trans. Electron Devices 57(1), 79–87 (2010)

    ADS  Google Scholar 

  82. E. Matioli, S. Brinkley, K.M. Kelchner, S. Nakamura, S. DenBaars, J. Speck, C. Weisbuch, Polarized light extraction in m-plane GaN light-emitting diodes by embedded photonic-crystals. Appl. Phys. Lett. 98(25), 251112 (2011)

    ADS  Google Scholar 

  83. J. Rass, T. Wernicke, W.G. Scheibenzuber, U.T. Schwarz, J. Kupec, B. Witzigmann, P. Vogt, S. Einfeldt, M. Weyers, M. Kneissl, Polarization of eigenmodes in laser diode waveguides on semipolar and nonpolar GaN. Phys. Status Solidi (RRL)—Rapid Res. Lett. 4(1–2), 1–3 (2010)

    ADS  Google Scholar 

  84. J. Rass, T. Wernicke, S. Ploch, M. Brendel, A. Kruse, A. Hangleiter, W. Scheibenzuber, U.T. Schwarz, M. Weyers, M. Kneissl, Polarization dependent study of gain anisotropy in semipolar InGaN lasers. Appl. Phys. Lett. 99(17), 171105 (2011)

    ADS  Google Scholar 

  85. J.C. Rass, Charakterisierung von InGaN-basierten Lichtemittern auf semipolaren und nichtpolaren Halbleiteroberflächen/Characterization of InGaN-based light emitters on semipolar and nonpolar semiconductor orientations. Dissertation, Technische Universität Berlin (2012)

    Google Scholar 

  86. C.-Y. Huang, A. Tyagi, Y.-D. Lin, M.T. Hardy, P.S. Hsu, K. Fujito, J.-S. Ha, H. Ohta, J.S. Speck, S.P. DenBaars, S. Nakamura, Propagation of spontaneous emission in birefringent m-axis oriented semipolar \((11\overline{2}2)\) (Al,In,Ga)N waveguide structures. Jpn. J. Appl. Phys. 49(1), 010207 (2010)

    ADS  Google Scholar 

  87. T. Wunderer, P. Bruckner, B. Neubert, F. Scholz, M. Feneberg, F. Lipski, M. Schirra, K. Thonke, Bright semipolar GaInN/GaN blue light emitting diode on side facets of selectively grown GaN stripes. Appl. Phys. Lett. 89(4), 041121 (2006)

    ADS  Google Scholar 

  88. F. Scholz, T. Wunderer, M. Feneberg, K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, GaInN-based LED structures on selectively grown semi-polar crystal facets. Phys. Status Solidi A 207(6), 1407–1413 (2010)

    ADS  Google Scholar 

  89. T. Wunderer, M. Feneberg, F. Lipski, J. Wang, R.A.R. Leute, S. Schwaiger, K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, G.J. Beirne, M. Jetter, P. Michler, L. Schade, C. Vierheilig, U.T. Schwarz, A.D. Dräger, A. Hangleiter, F. Scholz, Three-dimensional GaN for semipolar light emitters. Phys. Status Solidi B 248(3), 549–560 (2011)

    ADS  Google Scholar 

  90. S. Jung, Y. Chang, K.-H. Bang, H.-G. Kim, Y.-H. Choi, S.-M. Hwang, K.H. Baik, High brightness nonpolar a-plane (11–20) GaN light-emitting diodes. Semicond. Sci. Technol. 27(2), 024017 (2012)

    ADS  Google Scholar 

  91. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak. Appl. Phys. Lett. 85(22), 5143–5145 (2004)

    ADS  Google Scholar 

  92. A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Milliwatt power blue InGaN/GaN light-emitting diodes on semipolar GaN templates. Jpn. J. Appl. Phys. 44(30), 945–947 (2005)

    ADS  Google Scholar 

  93. T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, N. Sawaki, Fabrication and properties of semi-polar \((1\overline{1}01)\) and \((11\overline{2}2)\) InGaN/GaN light emitting diodes on patterned Si substrates. Phys. Status Solidi C 5(6), 2234–2237 (2008)

    ADS  Google Scholar 

  94. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {\(11\overline{2}2\)} GaN bulk substrates. Jpn. J. Appl. Phys. 45(26), L659–L662 (2006)

    ADS  Google Scholar 

  95. H. Sato, A. Tyagi, H. Zhong, N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, High power and high efficiency green light emitting diode on free-standing semipolar (\(11\overline{2}2\)) bulk GaN substrate. Phys. Status Solidi (RRL)—Rapid Res. Lett. 1(4), 162–164 (2007)

    ADS  Google Scholar 

  96. H. Sato, R.B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Optical properties of yellow light-emitting diodes grown on semipolar \((11\overline{2}2)\) bulk GaN substrates. Appl. Phys. Lett. 92(22), 221110 (2008)

    ADS  Google Scholar 

  97. Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S.P. DenBaars, S. Nakamura, 30-mw-class high-power and high-efficiency blue semipolar (\(10\overline{11}\)) InGaN/GaN light-emitting diodes obtained by backside roughening technique. Appl. Phys. Express 3(10), 102101 (2010)

    ADS  Google Scholar 

  98. H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, High power and high efficiency blue light emitting diode on freestanding semipolar (\(10\overline{11}\)) bulk GaN substrate. Appl. Phys. Lett. 90(23), 233504 (2007)

    ADS  Google Scholar 

  99. S. Yamamoto, Y. Zhao, C.-C. Pan, R.B. Chung, K. Fujito, J. Sonoda, S.P. DenBaars, S. Nakamura, High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (\(20\overline{2}1\)) GaN substrates. Appl. Phys. Express 3(12), 122102 (2010)

    ADS  Google Scholar 

  100. K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, H. Takasu, Dislocation-free m-plane InGaN/GaN light-emitting diodes on m-plane GaN single crystals. Jpn. J. Appl. Phys. 45(45), L1197–L1199 (2006)

    ADS  Google Scholar 

  101. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Demonstration of nonpolar m-plane InGaN/GaN light-emitting diodes on free-standing m-plane GaN substrates. Jpn. J. Appl. Phys. 44(5), 173–175 (2005)

    ADS  Google Scholar 

  102. A. Chakraborty, B.A. Haskell, H. Masui, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Nonpolar m-plane blue-light-emitting diode lamps with output power of \(23.5\,\rm mW\) under pulsed operation. Jpn. J. Appl. Phys. 45(2A), 739–741 (2006)

    ADS  Google Scholar 

  103. K.-C. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, S.P. DenBaars, Improved electroluminescence on nonpolar m-plane InGaN/GaN quantum wells LEDs. Phys. Status Solidi (RRL)—Rapid Res. Lett. 1(3), 125–127 (2007)

    ADS  Google Scholar 

  104. D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S.-I. Nagahama, T. Mukai, Watt-class high-output-power 365 nm ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 43(9A), 5945–5950 (2004)

    ADS  Google Scholar 

  105. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, White light emitting diodes with super-high luminous efficacy. J. Phys. D, Appl. Phys. 43(35), 354002 (2010)

    Google Scholar 

  106. T. Mukai, M. Yamada, S. Nakamura, Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys., Part 1 38(7A), 3976–3981 (1999)

    Google Scholar 

  107. Y. Narakawa, Nichia Corporation, Recent developments of high efficiency white light emitting diodes. Presentation at the ICNS-7, Las Vegas, USA (2007)

    Google Scholar 

  108. Nichia Corporation, Oral presentation at the ICNS-8, Jeju, Korea (2009)

    Google Scholar 

  109. W. Goetz, Philips-Lumileds lighting, high power III-nitride based light emitting diodes: progress and challenges. Presentation at the ICNS-7, Las Vegas, USA (2007)

    Google Scholar 

  110. W. Goetz, Philips-Lumileds lighting. Presentation at the rump session on the ‘Future of Solid State Lighting’ at the ICNS-8, Jeju, Korea (2009)

    Google Scholar 

  111. Nichia Corporartion, 2012 Nichia Led Catalogue. Website, 2012. Available online at http://www.nichia.co.jp

  112. Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama, T. Nakamura, Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar \(\{20\overline{2}1\}\) GaN substrates. Appl. Phys. Express 2(9), 092101 (2009)

    ADS  Google Scholar 

  113. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, T. Nakamura, 531 nm green lasing of InGaN based laser diodes on semi-polar \(\{20\overline{2}1\}\) free-standing GaN substrates. Appl. Phys. Express 2, 082101 (2009)

    ADS  Google Scholar 

  114. T. Yamashita, T. Akiyama, K. Nakamura, T. Ito, Surface reconstructions on GaN and InN semipolar \((20\overline{2}1)\) surfaces. Jpn. J. Appl. Phys. 49(1), 018001 (2010)

    ADS  Google Scholar 

  115. Y.S. Kim, A. Kaneta, M. Funato, Y. Kawakami, T. Kyono, M. Ueno, T. Nakamura, Optical gain spectroscopy of a semipolar \((20\overline{2}1)\)-oriented green InGaN laser diode. Appl. Phys. Express 4(5), 052103 (2011)

    ADS  Google Scholar 

  116. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, High-power blue-violet semipolar \((20\overline{21})\) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2. Appl. Phys. Express 4(8), 082104 (2011)

    ADS  Google Scholar 

  117. Y. Kawaguchi, C.-y. Huang, Y.-r. Wu, Q. Yan, C.-c. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C.G. Van de Walle, S.P. DenBaars, S. Nakamura, Influence of polarity on carrier transport in semipolar \((20\overline{2}1)\) and \((20\overline{21})\) multiple-quantum-well light-emitting diodes. Appl. Phys. Lett. 100(23), 231110 (2012)

    ADS  Google Scholar 

  118. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. Shan Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C.G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, D. Feezell, Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. Appl. Phys. Lett. 100(20), 201108 (2012)

    ADS  Google Scholar 

  119. P.S. Hsu, K.M. Kelchner, A. Tyagi, R.M. Farrell, D.A. Haeger, K. Fujito, H. Ohta, S.P. DenBaars, J.S. Speck, S. Nakamura, InGaN/GaN blue laser diode grown on semipolar \((30\overline{3}1)\) free-standing GaN substrates. Appl. Phys. Express 3(5), 052702 (2010)

    ADS  Google Scholar 

  120. Soraa, Soraa Premium MR 16 LED Lamp, Product# Mr16-50-b01-12-830-25. Website, 2012. Available online at http://www.soraa.com

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB 787) “Semiconductor Nanophotonics” and the Research Group (FOR 957) “PolarCoN”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kneissl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kneissl, M., Rass, J., Schade, L., Schwarz, U.T. (2013). Growth and Optical Properties of GaN-Based Non- and Semipolar LEDs. In: Seong, TY., Han, J., Amano, H., Morkoc, H. (eds) III-Nitride Based Light Emitting Diodes and Applications. Topics in Applied Physics, vol 126. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5863-6_5

Download citation

Publish with us

Policies and ethics