Skip to main content
Log in

Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

TP53 mutations play a significant role in glioma tumorigenesis. When located in in the DNA binding domain, these mutations can perturb p53 protein conformation and its function, often culminating in altered downstream signaling. Here we describe prevalent pattern of TP53 point mutations in a cohort of 40 glioma patients and show their relevance to gliomagenesis. Point mutations in exon 5–9 of TP53 gene were detected by DNA sequencing. Possible influence of identified mutations at the function of p53 was studied computationally and correlated with the survival. Point mutations in TP53 were detected in 10 glioma samples (25%), out of which 70% were from high grade glioma. A total of 19 TP53 point mutations were identified, out of which 42% were found to be in the DNA binding region of p53. Computational analysis predicted 87.5% of these mutations to be “probably damaging”. In three patients with tumors possessing point mutations R273H, R248Q, Y163H and R175H and poor survival times, structural analysis revealed the nature of these mutations to be disruptive and associated with high risk for cancer progression. In high grade glioma, recurrent TP53 point mutations may be the key to tumor progression, thus, emphasizing their significance in gliomagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang Y., Uhrbom L 2012. On the origin of glioma. Ups. J. Med. Sci. 117, 113–121.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang J., Wu G., Miller C.P., Tatevossian R.G., Dalton J.D., Tang B., Orisme W., Punchihewa C., Parker M., Qaddoumi I., Boop F.A., Lu C., Kandoth C., Ding L., Lee R., et al 2013. Whole-genome sequencing identifies genetic alterations in pediatric low grade gliomas. Nat. Genetics. 45, 602–612.

    Article  CAS  PubMed  Google Scholar 

  3. Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R 2013. The somatic genomic landscape of glioblatoma. Cell. 155, 462–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohgaki H., Kleihues P 2007. Genetic pathways to primary and secondary glioblastomas. Am. J. Pathol. 170, 1445–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartzbaum J.A., Fisher J.L., Aldape K.D., Wrensch M 2006. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol. 2, 494–503.

    Article  PubMed  Google Scholar 

  6. Rasheed B.K., McLendon R.E., Herndon J.E., Friedman H.S., Friedman A.H., Bigner D.D., Bigner S.H 1994. Alterations of the TP53 gene in human gliomas. Cancer Res. 54, 1324–1330.

    CAS  PubMed  Google Scholar 

  7. Hede S.M., Nazarenko I., Nister M., Lindstrom M.S 2011. Novel perspective of p53 function in Neural stem cells and brain tumors. J. Oncol. 11, 1–11. doi 10.1155/2011/852970

    Article  Google Scholar 

  8. Nozaki M., Tada M., Kobayashi H., Zhang C.L., Sawamura Y., Abe H., Ishii N., van Meir E.G 1999. Roles of functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro Oncol. 1, 124–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagpal J., Jamoona A., Gulati N.D., Mohan A., Braun A., Murali R., Jhanwar-Uniyal M 2006. Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res. 26, 4633–4639.

    CAS  PubMed  Google Scholar 

  10. Ohgaki H., Dessen P., Jourde B., Horstmann S., Nishikawa T., Di Patre P.L., Burkhard C., Schüler D., Probst-Hensch N.M., Maiorka P.C., Baeza N., Pisani P., Yonekawa Y., Yasargil M.G., Lütolf U.M., Kleihues P 2004. Genetic pathways to glioblastoma: A populationbased study. Cancer Res. 64, 6892–6899.

    Article  CAS  PubMed  Google Scholar 

  11. Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P 1994. Crystal structure of p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science. 265, 346–355.

    Article  CAS  PubMed  Google Scholar 

  12. Petitjean A., Mathe E., Kato S., Ishioka C., Tavtigian S.V., Hainaut P., Olivier M 2007. Impact on mutant p53 functional properties on TP53 mutation patterns and tumour phenotype: Lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629.

    Article  CAS  PubMed  Google Scholar 

  13. Xu J., Wang J., Hu Y., Qian J., Xu B., Chen H., Zou W., Fang J.Y 2014. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death Dis. 5, 1–9.

    Google Scholar 

  14. Phatak P., Selvi S.K., Divya T., Hegde A.S., Hegde S., Somasundaram K 2002. Alterations in tumour suppressor gene p53 in human gliomas from Indian patients. J. Biosci. 27, 673–678.

    Article  CAS  PubMed  Google Scholar 

  15. Roy A., Kucukural A., Zhang Y 2010. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeLano W.L 2014. The Pymol Molecular Graphics Syste 2002. Delano Scientific, San Carlos, CA. http://www.pymol.org.

  17. Jadersten M., Saft L., Pellagatti A., Göhring G., Wainscoat J.S., Boultwood J., Porwit A., Schlegelberger B., Hellström-Lindberg E 2009. Clonal heterogeneity in the 5q-syndrome: p53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica. 94, 1762–1766.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peraud A., Kreth F.W., Wiestler O.D., Kleihues P., Reulen H.J 2002. Prognostic impact of TP53 mutations and P53 overexpression in supratentorial WHO grade II astrocytomas and oligoastrocytomas. Clin. Cancer Res. 8, 1117–1124.

    CAS  PubMed  Google Scholar 

  19. Olivier M., Hollstein M., Hainaut P 2010. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008, 1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wong K.B., DeDecker B.S., Freund S.M., Proctor M.R., Bycroft M., Fersht A.R 1999. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. U. S. A. 96, 8438–8442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 2BIM, Human p53 Core Domain Mutant M133LV203A-N239Y-N268D-R273 2014. The Protein Data Bank. http://www.rcsb.org/pdb/explore.do? structureId=2BIM.

  22. Brazdova M., Quante T., Togel L., Walter K., Loscher C., Tichy V., Cincarova L., Deppert W., Tolstonog G.V 2009. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res. 37, 1486–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freed-Pastor W.A., Prives C 2012. Mutant p53: One name, many proteins. Genes Dev. 26, 1268–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bullock A.N., Henckel J., Fersht A.R 2000. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: Definition of mutant states for rescue in cancer therapy. Oncogene. 19, 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  25. Friedlander P., Legros Y., Soussi T., Prives C 1996. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem. 271, 25468–25478.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kr. Saikia.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 2, pp. 334–341.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, P.P., Dutta, D., Mirza, Z. et al. Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis. Mol Biol 51, 293–299 (2017). https://doi.org/10.1134/S0026893317020182

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317020182

Keywords

Navigation