Skip to main content
Log in

Molecular biology of colorectal cancer in clinical practice

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review summarizes current data on the molecular genetic mechanisms underlying the pathogenesis of colorectal cancer (CRC) and addresses the connections between these mechanisms and biomarkers used for predictive diagnosis, risk stratification, prognosis, and predicting response to chemotherapy and tar-geted therapy. Evidence of microRNA involvement in the regulation of major signaling pathways affected by CRC pathogenesis is discussed, and signaling pathways that can be used as targets in the therapy of colorectal cancer are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CIMP:

CpG island methylator phenotype

CIN:

chromosomal instability

EGFR:

epidermal growth factor receptor

KRAS:

homolog of oncogene V-Ki-ras2 from Kirsten rat sarcoma virus

MSI:

microsatellite instability

TGF-β:

transforming growth factor beta

WNT:

signaling pathway regulating embryogenesis, cell differentiation, and malignant tumor development

References

  1. European Medicines Agency. 2008. Committee for Medicinal Products for Human Use May 2008 Plenary Meeting Monthly Report. http://www.emea.europa.eu/ pdfs/human/press/pr/27923508en.pdf.

  2. Karapetis Christos S., Khambata-Ford S., Jonker D.J., O’Callaghan C.J., Tu D., Tebbutt N.C., Simes R.J., Chalchal H., Shapiro J.D., Robitaille S., Price T.J., Shepherd L., Au H.J., Langer C., Moore M.J., Zalcberg J.R. 2008. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  3. Siena S., Sartore-Bianchi A., Di Nicolantonio F., Balfour J., Bardelli A. 2009. Biomarkers predicting clinical outcome of epidermal growth factor receptor targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst. 101, 1308–1324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Alexander J., Watanabe T., Wu T.T., Rashid A., Li S., Hamilton S.R. 2001. Histopathological identification of colon cancer with microsatellite instability. Am. J. Pathol. 158, 527–535.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Vogelstein B., Fearon E.R., Hamilton S.R., Kern S.E., Preisinger A.C., Leppert M., Nakamura Y., White R., Smits A.M., Bos J.L. 1988. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532.

    Article  CAS  PubMed  Google Scholar 

  6. Bacher J.W., Flanagan L.A., Smalley R.L., Nassif N.A., Burgart L.J., Halberg R.B., Megid W.M., Thibodeau S.N. 2004. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis. Markers. 20, 237–250.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Grady W.M., Carethers J.M. 2008. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 135, 1079–1099.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Walther A., Houlston R., Tomlinson I. 2008. Association between chromosomal instability and prognosis in colorectal cancer: A meta-analysis. Gut. 57, 941–950.

    Article  CAS  PubMed  Google Scholar 

  9. Walther A., Johnstone E., Swanton C., Midgley R., Tomlinson I., Kerr D. 2009. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer. 9, 489–499.

    Article  CAS  PubMed  Google Scholar 

  10. Boland C.R., Thibodeau S.N., Hamilton S.R., Sidransky D., Eshleman J.R., Burt R.W., Meltzer S.J., Rodriguez-Bigas M.A., Fodde R., Ranzani G.N., Srivastava S. 1998. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257.

    CAS  PubMed  Google Scholar 

  11. Fallik D., Borrini F., Boige V., Viguier J., Jacob S., Miquel C., Sabourin J.C., Ducreux M., Praz F. 2003. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 63, 5738–5744.

    CAS  PubMed  Google Scholar 

  12. Grady W.M. 2004. Genomic instability and colon cancer. Cancer Metastasis Rev. 23, 11–27.

    Article  CAS  PubMed  Google Scholar 

  13. Domingo E., Laiho P., Ollikainen M., Pinto M., Wang L., French A.J., Westra J., Frebourg T., Espín E., Armengol M., Hamelin R., Yamamoto H., Hofstra R.M., Seruca R., Lindblom A., Peltomäki P., Thibodeau S.N., Aaltonen L.A., Schwartz S. 2004. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J. Med. Genet. 41, 664–668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Barault L., Charon-Barra C., Jooste V., de la Vega M.F., Martin L., Roignot P., Rat P., Bouvier A.M., LaurentPuig P., Faivre J., Chapusot C., Piard F. 2008. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 68, 8541–8546.

    Article  CAS  PubMed  Google Scholar 

  15. Hinoue T., Weisenberger D.J., Pan F., Campan M., Kim M., Young J., Whitehall V.L., Leggett B.A., Laird P.W. 2009. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling. PLOS ONE. 4, e8357.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Matsuzaki K., Deng G., Tanaka H., Kakar S., Miura S., Kim Y.S. 2005. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin. Cancer Res. 11, 8564–8569.

    Article  CAS  PubMed  Google Scholar 

  17. Samowitz W.S., Powers M.D., Spirio L.N., Nollet F., van Roy F., Slattery M.L. 1999. Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res. 59, 1442–1444.

    CAS  PubMed  Google Scholar 

  18. Grady W.M., Myeroff L.L., Swinler S.E., Rajput A., Thiagalingam S., Lutterbaugh J.D., Neumann A., Brattain M.G., Chang J., Kim S.J., Kinzler K.W., Vogelstein B., Willson J.K., Markowitz S. 1999. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 59, 320–324.

    CAS  PubMed  Google Scholar 

  19. Alhopuro P., Alazzouzi H., Sammalkorpi H., Dávalos V., Salovaara R., Hemminki A., Järvinen H., Mecklin J.P., Schwartz S.Jr., Aaltonen L.A., Arango D. 2005. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin. Cancer Res. 11, 6311–6316.

    Article  CAS  PubMed  Google Scholar 

  20. Popat S., Houlston R.S. 2005. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur. J. Cancer. 41, 2060–2070.

    Article  CAS  PubMed  Google Scholar 

  21. Vodolazhskii D.I., Antonets A.V., Dvadnenko K.V., Vladimirova L.Yu., Gevorkyan Yu.A., Kasatkin V.F., Maksimov A.Yu. 2014. Relationship between KRAS gene mutations and clinical-pathological features of colorectal cancer in patients from southern Russia. Mezhd. Zh. Eksp. Obraz. 1, 65–69.

    Google Scholar 

  22. Downward J. 2003. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer. 3, 11–22.

    Article  CAS  PubMed  Google Scholar 

  23. Artale S., Sartore-Bianchi A., Veronese S.M., Gambi V., Sarnataro C.S., Gambacorta M., Lauricella C., Siena S. 2008. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219.

    Article  PubMed  Google Scholar 

  24. Rajagopalan H., Bardelli A., Lengauer C., Kinzler K.W., Vogelstein B., Velculescu V.E. 2002. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 418 (6901), 934.

    Article  CAS  PubMed  Google Scholar 

  25. Di Nicolantonio F., Martini M., Molinari F., SartoreBianchi A., Arena S., Saletti P., De Dosso S., Mazzucchelli L., Frattini M., Siena S., Bardelli A. 2008. Wildtype BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 26, 5705–5712.

    Article  PubMed  Google Scholar 

  26. Tol J., Nagtegaal I.D., Punt C.J. 2009. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med. 361, 98–99.

    Article  CAS  PubMed  Google Scholar 

  27. Danielsen S.A., Lind G.E., Bjørnslett M., Meling G.I., Rognum T.O., Heim S., Lothe R.A. 2008. Novel mutations of the suppressor gene PTEN in colorectal carcinomas stratified by microsatellite instabilityand TP53 mutation-status. Hum. Mutat. 29, E252–E262.

    Article  PubMed  Google Scholar 

  28. Parsons D.W., Wang T.L., Samuels Y., Bardelli A., Cummins J.M., DeLong L., Silliman N., Ptak J., Szabo S., Willson J.K., Markowitz S., Kinzler K.W., Vogelstein B., Lengauer C., Velculescu V.E. 2005. Colorectal cancer: Mutations in a signalling pathway. Nature. 436, 792.

    Article  CAS  PubMed  Google Scholar 

  29. Jo W.S., Carethers J.M. 2006. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark. 2, 51–60.

    CAS  PubMed  Google Scholar 

  30. Razis E., Briasoulis E., Vrettou E., Skarlos D., Papamichael D., Kostopoulos I., Samantas E., Xanthakis I., Bobos M., Galanidi E., Bai M., Gikonti I., Koukouma A., Kafiri G., Papakostas P., Kalogeras K., Kosmidis P., Fountzilas G. 2008. Potential value of PTEN in predicting cetuximab response in colorectal cancer: An exploratory study. BMC Cancer. 8, 234.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Baudhuin L.M., Burgart L.J., Leontovich O., Thibodeau S.N. 2005. Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam. Cancer. 4, 255–265.

    Article  PubMed  Google Scholar 

  32. Shia J. 2008. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: 1. The utility of immunohistochemistry. J. Mol. Diagn. 10, 293–300.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ahlquist D.A. 2010. Molecular detection of colorectal neoplasia. Gastroenterology. 138, 2127–2139.

    Article  CAS  PubMed  Google Scholar 

  34. Itzkowitz S.H., Jandorf L., Brand R., Rabeneck L., Schroy P.C. 3rd, Sontag S., Johnson D., Skoletsky J., Durkee K., Markowitz S., Shuber A. 2007. Improved fecal DNA test for colorectal cancer screening. Clin. Gastroenterol. Hepatol. 5, 111–117.

    Article  CAS  PubMed  Google Scholar 

  35. Li M., Chen W.D., Papadopoulos N., Goodman S.N., Bjerregaard N.C., Laurberg S., Levin B., Juhl H., Arber N., Moinova H., Durkee K., Schmidt K., He Y., Diehl F., Velculescu V.E., Zhou S., Diaz L.A. Jr, Kinzler K.W., Markowitz S.D., Vogelstein B. 2009. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863.

    Article  PubMed Central  PubMed  Google Scholar 

  36. miRBase: The MicroRNA Database. http://www.mirbase.org/cgi-bin/query.pl?terms=human

  37. Akao Y., Nakagawa Y., Naoe T. 2006. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol. Rep. 16, 845–850.

    CAS  PubMed  Google Scholar 

  38. Pagliuca A., Valvo C., Fabrizi E., di Martino S., Biffoni M., Runci D., Forte S., De Maria R., Ricci-Vitiani L. 2012. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene. 32, 4806–4813.

    Article  PubMed  Google Scholar 

  39. Svoboda M., Sana J., Fabian P., Kocakova I., Gombosova J., Nekvindova J., Radova L., Vyzula R., Slaby O. 2012. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat. Oncol. 7, 195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Weiss G.J., Bemis L.T., Nakajima E., Sugita M., Birks D.K., Robinson W.A., Varella-Garcia M., Bunn P.A., Jr., Haney J., Helfrich B.A., Kato H., Hirsch F.R., Franklin W.A. 2008. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann. Oncol. 19, 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  41. Webster R.J., Giles K.M., Price K.J., Zhang P.M., Mattick J.S., Leedman P.J. 2009. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J. Biol. Chem. 284, 5731–5741.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang B., Pan X., Cobb G.P., Anderson T.A. 2007. MicroRNAs as oncogenes and tumor suppressors. Dev. Biol. 302, 1–12.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu H., Dougherty U., Robinson V., Mustafi R., Pekow J., Kupfer S., Li Y.C., Hart J., Goss K., Fichera A., Joseph L., Bissonnette M. 2011. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: Role of G1 regulators. Mol. Cancer Res. 9, 960–975.

    Article  CAS  PubMed  Google Scholar 

  44. Tsang W.P., Kwok T.T. 2009. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis. 30, 953–959.

    Article  CAS  PubMed  Google Scholar 

  45. Sebio A., Paré L., Páez D., Salazar J., González A., Sala N., del Río E., Martín-Richard M., Tobeña M., Barnadas A., Baiget M. 2013. The LCS6 polymorphism in the binding site of let-7 microRNA to the KRAS 3'untranslated region: its role in the efficacy of antiEGFR-based therapy in metastatic colorectal cancer patients. Pharmacogenet. Genomics. 23, 142–147.

    Article  CAS  PubMed  Google Scholar 

  46. Gao J.S., Zhang Y., Tang X., Tucker L.D., Tarwater P.M., Quesenberry P.J., Rigoutsos I., Ramratnam B. 2011. The Evi1, microRNA-143, K-Ras axis in colon cancer. FEBS Lett. 585, 693–699.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pichler M., Winter E., Stotz M., Eberhard K., Samonigg H., Lax S., Hoefler G. 2012. Down-regulation of KRAS interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br. J. Cancer. 106, 1826–1832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kent O.A., Fox-Talbot K., Halushka M.K. 2013. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene. 32, 2576–2585.

    Article  CAS  PubMed  Google Scholar 

  49. Yantiss R.K., Goodarzi M., Zhou X.K., Rennert H., Pirog E.C., Banner B.F., Chen Y.T. 2009. Clinical, pathologic, and molecular features of early-onset colorectal carcinoma. Am. J. Surg. Pathol. 33, 572–582.

    Article  PubMed  Google Scholar 

  50. Ota T., Doi K., Fujimoto T., Tanaka Y., Ogawa M., Matsuzaki H., Kuroki M., Miyamoto S., Shirasawa S., Tsunoda T. 2012. KRAS up-regulates the expression of miR-181a, miR-200c and miR-210 in a three-dimensional-specific manner in DLD-1 colorectal cancer cells. Anticancer Res. 32, 2271–2275.

    CAS  PubMed  Google Scholar 

  51. Guo C., Sah J.F., Beard L., Willson J.K., Markowitz S.D., Guda K. 2008. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer. 47, 939–946.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Arcaroli J.J., Quackenbush K.S., Powell R.W., Pitts T.M., Spreafico A., Varella-Garcia M., Bemis L., Tan A.C., Reinemann J.M., Touban B.M., Dasari A., Eckhardt S.G., Messersmith W.A. 2012. Common PIK3CA mutants and a novel 3' UTR mutation are associated with increased sensitivity to saracatinib. Clin. Cancer Res. 18, 2704–2714.

    Article  CAS  PubMed  Google Scholar 

  53. Zhong M., Bian Z., Wu Z. 2013. MiR-30a suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma. Cell. Physiol. Biochem. 31, 209–218.

    Article  CAS  PubMed  Google Scholar 

  54. De Roock W., De Vriendt V., Normanno N., Ciardiello F., Tejpar S. 2011. KRAS, BRAF, PIK3CA, and PTEN mutations: Implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 12, 594–603.

    Article  PubMed  Google Scholar 

  55. Langlois M.J., Bergeron S., Bernatchez G., Boudreau F., Saucier C., Perreault N., Carrier J.C., Rivard N. 2010. The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression. PLOS ONE. 5, e15742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Xiong B., Cheng Y., Ma L., Zhang C. 2013. MiR-21 regulates biological behavior through the PTEN/PI-3K/ Akt signaling pathway in human colorectal cancer cells. Int. J. Oncol. 42, 219–228.

    CAS  PubMed  Google Scholar 

  57. Nishimura J., Handa R., Yamamoto H., Tanaka F., Shibata K., Mimori K., Takemasa I., Mizushima T., Ikeda M., Sekimoto M., Ishii H., Doki Y., Mori M. 2012. MicroRNA-181a is associated with poor prognosis of colorectal cancer. Oncol. Rep. 28, 2221–2226.

    CAS  PubMed  Google Scholar 

  58. Wu W., Yang J., Feng X., Wang H., Ye S., Yang P., Tan W., Wei G., Zhou Y. 2013. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol. Cancer. 12, 30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Li J., Zhang Y., Zhao J., Kong F., Chen Y. 2011. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol. Cell. Biochem. 357, 31–38.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang G., Xia S., Tian H., Liu Z., Zhou T. 2012. Clinical significance of miR-22 expression in patients with colorectal cancer. Med. Oncol. 29, 3108–3112.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Vodolazhsky.

Additional information

Original Russian Text © O.I. Kit, D.I. Vodolazhsky, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 4, pp. 531–540.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kit, O.I., Vodolazhsky, D.I. Molecular biology of colorectal cancer in clinical practice. Mol Biol 49, 471–479 (2015). https://doi.org/10.1134/S0026893315040081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315040081

Keywords

Navigation