Skip to main content

Molecular Parameters for Prognostic and Predictive Assessment in Colorectal Cancer

  • Chapter
Rectal Cancer

Part of the book series: Updates in Surgery ((UPDATESSURG))

Abstract

Over the last several years, a large amount of information has been obtained on the molecular and genetic characteristics of colorectal cancer, especially related to the mechanisms of cancer development, invasion, metastasis and response to therapy. Part of this information can be translated into useful molecular testing, which might assist the clinician in classifying patients more effectively and developing personalized therapies. Here we review the molecular characteristics of colorectal cancer, with the specific purpose of highlighting those features currently known to possess prognostic or predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69– 90

    Article  PubMed  Google Scholar 

  2. Michor F, Iwasa Y, Lengauer C et al (2005) Dynamics of colorectal cancer. Semin Cancer Biol 15:484–93

    Article  PubMed  CAS  Google Scholar 

  3. Jass JR (2006) Colorectal cancer: a multipathway disease. Crit Rev Oncol 12:273–87

    Article  Google Scholar 

  4. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507

    Article  PubMed  CAS  Google Scholar 

  5. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  6. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–74

    Article  PubMed  CAS  Google Scholar 

  7. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  PubMed  CAS  Google Scholar 

  8. Rustgi AK (2007) The genetics of hereditary colon cancer. Genes Dev 21:2525–2538

    Article  PubMed  CAS  Google Scholar 

  9. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  PubMed  CAS  Google Scholar 

  10. Gangadhar T, Schilsky RL, Medscape (2010) Molecular markers to individualize adjuvant therapy for colon cancer. Nat Rev Clin Oncol 7:318–325

    Article  PubMed  CAS  Google Scholar 

  11. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7:153–162

    Article  PubMed  CAS  Google Scholar 

  12. Sinicrope FA, Sargent DJ (2012) Molecular Pathways: Microsatellite Instability in Colorectal Cancer: Prognostic, Predictive, and Therapeutic Implications. Clin Cancer Res 18:1506–1512

    Article  PubMed  CAS  Google Scholar 

  13. Galiatsatos P, Foulkes WD (2006) Familial adenomatous polyposis. Am J Gastroenterol 101:385–398

    Article  PubMed  Google Scholar 

  14. Brocardo M, Henderson BR (2008) APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol 18:587–596

    Article  PubMed  CAS  Google Scholar 

  15. Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23:11–27

    Article  PubMed  CAS  Google Scholar 

  16. Barber TD, McManus K, Yuen KW et al (2008) Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A 105:3443–3448

    Article  PubMed  CAS  Google Scholar 

  17. Kim MS, Lee J, Sidransky D (2010) DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29:181–206

    Article  PubMed  CAS  Google Scholar 

  18. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  PubMed  CAS  Google Scholar 

  19. Lind GE, Raiborg C, Danielsen SA et al (2011) SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis. Oncogene 30:3967–3978

    Article  PubMed  CAS  Google Scholar 

  20. Ned RM, Melillo S, Marrone M (2011) Fecal DNA testing for Colorectal Cancer Screening: the ColoSure test. PLoS Curr 3:RRN1220.

    PubMed  Google Scholar 

  21. Itzkowitz S, Brand R, Jandorf L et al (2008) A simplified, noninvasive stool DNA test for colorectal cancer detection. Am J Gastroenterol 103:2862–2870

    Article  PubMed  Google Scholar 

  22. Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  23. Pritchard CC, Grady WM (2011) Colorectal cancer molecular biology moves into clinical practice. Gut 60:116–129

    Article  PubMed  CAS  Google Scholar 

  24. Walther A, Houlston R, Tomlinson I (2008) Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57:941–950

    Article  PubMed  CAS  Google Scholar 

  25. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618

    Article  PubMed  CAS  Google Scholar 

  26. Deschoolmeester V, Baay M, Specenier P et al (2010) A review of the most promising bio-markers in colorectal cancer: one step closer to targeted therapy. Oncologist 15:699–731

    Article  PubMed  Google Scholar 

  27. Walther A, Johnstone E, Swanton C et al (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9:489–499

    Article  PubMed  CAS  Google Scholar 

  28. Ogino S, Meyerhardt JA, Irahara N et al (2009) KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. Clin Cancer Res 15:7322–7329

    Article  PubMed  CAS  Google Scholar 

  29. Roth AD, Tejpar S, Delorenzi M et al (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 28:466–474

    Article  PubMed  CAS  Google Scholar 

  30. Tol J, Nagtegaal ID, Punt CJ (2009) BRAF mutation in metastatic colorectal cancer. N Engl J Med 361:98–99

    Article  PubMed  CAS  Google Scholar 

  31. Clark-Langone KM, Sangli C, Krishnakumar J, Watson D (2010) Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX Colon Cancer Assay. BMC Cancer 10:691

    Article  PubMed  CAS  Google Scholar 

  32. Kelley RK, Venook AP (2011) Prognostic and predictive markers in stage II colon cancer: is there a role for gene expression profiling? Clin Colorectal Cancer 10:73–80

    Article  PubMed  CAS  Google Scholar 

  33. Salazar R, Roepman P, Capella G et al (2011) Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol 29:17–24

    Article  PubMed  Google Scholar 

  34. Bertucci F, Salas S, Eysteries S et al (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23:1377–1391

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe T, Kobunai T, Tanaka T et al (2009) Gene expression signature and the prediction of lymph node metastasis in colorectal cancer by DNA microarray. Dis Colon Rectum 52:1941–1948

    Article  PubMed  Google Scholar 

  36. Watanabe T, Kobunai T, Yamamoto Y et al (2011) Gene expression of mesenchyme forkhead 1 (FOXC2) significantly correlates with the degree of lymph node metastasis in colorectal cancer. Int Surg 96:207–216

    Article  PubMed  Google Scholar 

  37. Carrer A, Zacchigna S, Balani A et al (2008) Expression profiling of angiogenic genes for the characterisation of colorectal carcinoma. Eur J Cancer 44:1761–1769

    Article  PubMed  CAS  Google Scholar 

  38. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  PubMed  CAS  Google Scholar 

  39. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  40. Link A, Balaguer F, Shen Y et al (2010) Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 19:1766–1774

    Article  PubMed  CAS  Google Scholar 

  41. Pu XX, Huang GL, Guo HQ et al (2010) Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol 25:1674–1680

    Article  PubMed  CAS  Google Scholar 

  42. Atreya I, Schimanski CC, Becker C et al (2007) The T-box transcription factor eomesoder-min controls CD8 T cell activity and lymph node metastasis in human colorectal cancer. Gut 56:1572–1578

    Article  PubMed  CAS  Google Scholar 

  43. Betts G, Jones E, Junaid S et al (2011) Suppression of tumor-specific CD4+ T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut, in press

    Google Scholar 

  44. Frey DM, Droeser RA, Viehl CT et al (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126:2635–2643

    PubMed  CAS  Google Scholar 

  45. Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    Article  PubMed  Google Scholar 

  46. Quasar Collaborative G, Gray R, Barnwell J et al (2007) Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370:2020–2029

    Article  CAS  Google Scholar 

  47. Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    Article  PubMed  CAS  Google Scholar 

  48. Koopman M, Kortman GA, Mekenkamp L et al (2009) Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 100:266–273

    Article  PubMed  CAS  Google Scholar 

  49. Sargent DJ, Marsoni S, Monges G et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226

    Article  PubMed  CAS  Google Scholar 

  50. Benatti P, Gafa R, Barana D et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340

    Article  PubMed  CAS  Google Scholar 

  51. Jover R, Zapater P, Castells A et al (2009) The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur J Cancer 45:365–373

    Article  PubMed  CAS  Google Scholar 

  52. Bertagnolli MM, Niedzwiecki D, Compton CC et al (2009) Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol 27:1814–1821

    Article  PubMed  CAS  Google Scholar 

  53. Fallik D, Borrini F, Boige V et al (2003) Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res 63:5738–5744

    PubMed  CAS  Google Scholar 

  54. Tejpar S, Bertagnolli M, Bosman F et al (2010) Prognostic and predictive biomarkers in resected colon cancer: current status and future perspectives for integrating genomics into bio-marker discovery. Oncologist 15:390–404

    Article  PubMed  CAS  Google Scholar 

  55. Boulay JL, Mild G, Lowy A et al (2002) SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br J Cancer 87:630–634

    Article  PubMed  CAS  Google Scholar 

  56. Alhopuro P, Alazzouzi H, Sammalkorpi H et al (2005) SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res 11:6311–6316

    Article  PubMed  CAS  Google Scholar 

  57. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572

    Article  PubMed  CAS  Google Scholar 

  58. Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  59. Overman MJ, Hoff PM (2007) EGFR-targeted therapies in colorectal cancer. Dis Colon Rectum 50:1259–1270

    Article  PubMed  Google Scholar 

  60. Moroni M, Veronese S, Benvenuti S et al (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6:279–286

    Article  PubMed  CAS  Google Scholar 

  61. Normanno N, Tejpar S, Morgillo F (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6:519–527

    Article  PubMed  CAS  Google Scholar 

  62. Maestro ML, Vidaurreta M, Sanz-Casla MT et al (2007) Role of the BRAF mutations in the microsatellite instability genetic pathway in sporadic colorectal cancer. Ann Surg Oncol 14:1229–1236

    Article  PubMed  CAS  Google Scholar 

  63. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  PubMed  CAS  Google Scholar 

  64. Laurent-Puig P, Cayre A, Manceau G et al (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 27:5924–5930

    Article  PubMed  CAS  Google Scholar 

  65. Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M et al (2009) Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 4:e7287

    Article  PubMed  CAS  Google Scholar 

  66. Bianco R, Shin I, Ritter CA et al (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822

    Article  PubMed  CAS  Google Scholar 

  67. She Y, Lee F, Chen J et al (2003) The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 selectively potentiates radiation response of human tumors in nude mice, with a marked improvement in therapeutic index. Clin Cancer Res 9:3773–3778

    PubMed  CAS  Google Scholar 

  68. Frattini M, Saletti P, Romagnani E et al (2007) PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer 97:1139–1145

    Article  PubMed  CAS  Google Scholar 

  69. Loupakis F, Pollina L, Stasi I et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27:2622–2629

    Article  PubMed  CAS  Google Scholar 

  70. Russo A, Bazan V, Iacopetta B et al (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23:7518–7528

    Article  PubMed  CAS  Google Scholar 

  71. Matlashewski GJ, Tuck S, Pim D et al (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7:961–963

    PubMed  CAS  Google Scholar 

  72. Tominaga T, Iwahashi M, Takifuji K et al (2010) Combination of p53 codon 72 polymorphism and inactive p53 mutation predicts chemosensitivity to 5-fluorouracil in colorectal cancer. Int J Cancer 126:1691–1701

    PubMed  CAS  Google Scholar 

  73. Boneberg EM, Legler DF, Hoefer MM et al (2009) Angiogenesis and lymphangiogenesis are downregulated in primary breast cancer. Br J Cancer 101:605–614

    Article  PubMed  CAS  Google Scholar 

  74. Croner RS, Fortsch T, Bruckl WM et al (2008) Molecular signature for lymphatic metastasis in colorectal carcinomas. Ann Surg 247:803–810

    Article  PubMed  Google Scholar 

  75. Lu AT, Salpeter SR, Reeve AE et al(2009) Gene expression profiles as predictors of poor outcomes in stage II colorectal cancer: A systematic review and meta-analysis. Clin Colorectal Cancer 8:207–214

    Article  PubMed  Google Scholar 

  76. Garman KS, Acharya CR, Edelman E et al (2008) A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc Natl Acad Sci U S A 105:19432–19437

    Article  PubMed  CAS  Google Scholar 

  77. Watanabe T, Kobunai T, Sakamoto E et al (2009) Gene expression signature for recurrence in stage III colorectal cancers. Cancer 115:283–292

    Article  PubMed  CAS  Google Scholar 

  78. Watanabe T, Wu TT, Catalano PJ et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206

    Article  PubMed  CAS  Google Scholar 

  79. Ebert MP, Tanzer M, Balluff B et al (2012) TFAP2E-DKK4 and chemoresistance in colorectal cancer. N Engl J Med 366:44–53

    Article  PubMed  CAS  Google Scholar 

  80. Baker JB, Dutta D, Watson D et al (2011) Tumor gene expression predicts response to ce-tuximab in patients with KRAS wild-type metastatic colorectal cancer. Br J Cancer 104:488–495

    Article  PubMed  CAS  Google Scholar 

  81. Scartozzi M, Bearzi I, Mandolesi A et al (2011) Epidermal growth factor receptor (EGFR) gene promoter methylation and cetuximab treatment in colorectal cancer patients. Br J Cancer 104:1786–1790

    Article  PubMed  CAS  Google Scholar 

  82. Koukourakis MI, Giatromanolaki A, Sivridis E et al (2011) Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin Cancer Res 17:4892–4900

    Article  PubMed  CAS  Google Scholar 

  83. Watanabe T, Kobunai T, Yamamoto Y et al (2011) Gene expression of vascular endothelial growth factor A, thymidylate synthase, and tissue inhibitor of metalloproteinase 3 in prediction of response to bevacizumab treatment in colorectal cancer patients. Dis Colon Rectum 54:1026–1035

    Article  PubMed  Google Scholar 

  84. Diasio RB, Johnson MR (2000) The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5-fluorouracil. Pharmacology 61:199–203

    Article  PubMed  CAS  Google Scholar 

  85. Wei X, McLeod HL, McMurrough J et al (1996) Molecular basis of the human dihydropy-rimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 98:610–615

    Article  PubMed  CAS  Google Scholar 

  86. Cohen V, Panet-Raymond V, Sabbaghian N et al (2003) Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin Cancer Res 9:1611–1615

    PubMed  CAS  Google Scholar 

  87. Lecomte T, Landi B, Beaune P et al (2006) Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin Cancer Res 12:3050–3056

    Article  PubMed  CAS  Google Scholar 

  88. Watson MA, Stewart RK, Smith GB et al (1998) Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19:275–280

    Article  PubMed  CAS  Google Scholar 

  89. McLeod HL, Sargent DJ, Marsh S et al (2010) Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol 28:3227–3233

    Article  PubMed  CAS  Google Scholar 

  90. Hoskins JM, Goldberg RM, Qu P et al (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99:1290–1295

    Article  PubMed  CAS  Google Scholar 

  91. Marsh S, McLeod HL (2001) Thymidylate synthase pharmacogenetics in colorectal cancer. Clin Colorectal Cancer 1:175–178

    Article  PubMed  CAS  Google Scholar 

  92. Bohanes P, Labonte MJ, Lenz HJ (2011) A review of excision repair cross-complementation group 1 in colorectal cancer. Clin Colorectal Cancer 10:157–164

    Article  PubMed  CAS  Google Scholar 

  93. Grimminger PP, Shi M, Barrett C et al (2011) TS and ERCC-1 mRNA expressions and clinical outcome in patients with metastatic colon cancer in CONFIRM-1 and -2 clinical trials. Pharmacogenomics J, in press

    Google Scholar 

  94. Spindler KL, Andersen RF, Jensen LH et al (2010) EGF61A>G polymorphism as predictive marker of clinical outcome to first-line capecitabine and oxaliplatin in metastatic colorectal cancer. Ann Oncol 21:535–539

    Article  PubMed  Google Scholar 

  95. Loupakis F, Ruzzo A, Salvatore L et al (2011) Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer. BMC Cancer 11:247

    Article  PubMed  CAS  Google Scholar 

  96. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumor angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  97. Shojaei F, Wu X, Malik AK et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  PubMed  CAS  Google Scholar 

  98. Yang L, DeBusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  99. Sakata K, Kwok TT, Murphy BJ et al (1991) Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance. Br J Cancer 64:809–814

    Article  PubMed  CAS  Google Scholar 

  100. Carmeliet P, Jain RK (2005) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  Google Scholar 

  101. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  102. Minoo P, Zlobec I, Peterson M et al (2010) Characterization of rectal, proximal and distal colon cancers based on clinicopathological, molecular and protein profiles. Int J Oncol 37:707–718

    Article  PubMed  CAS  Google Scholar 

  103. Slattery ML, Curtin K, Wolff RK et al (2009) A comparison of colon and rectal somatic DNA alterations. Dis Colon Rectum 52:1304–1311

    Article  PubMed  Google Scholar 

  104. Kalady MF, Sanchez JA, Manilich E et al (2009) Divergent oncogenic changes influence survival differences between colon and rectal adenocarcinomas. Dis Colon Rectum 52:1039–1045

    Article  PubMed  Google Scholar 

  105. Li JN, Zhao L, Wu J et al (2012) Differences in gene expression profiles and carcinogenesis pathways between colon and rectal cancer. J Dig Dis 13:24–32

    Article  PubMed  CAS  Google Scholar 

  106. Kapiteijn E, Liefers GJ, Los LC et al (2001) Mechanisms of oncogenesis in colon versus rectal cancer. J Pathol 195:171–178

    Article  PubMed  CAS  Google Scholar 

  107. Russo A, Bazan V, Iacopetta B et al (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23:7518–7528

    Article  PubMed  CAS  Google Scholar 

  108. Birkenkamp-Demtroder K, Olesen SH, Sorensen FB et al (2005) Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid. Gut 54:374–384

    Article  PubMed  CAS  Google Scholar 

  109. Fric P, Sovova V, Sloncova E et al (2009) Different expression of some molecular markers in sporadic cancer of the left and right colon. Eur J Cancer Prev 9:265–268

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Suzanne Kerbavcic for excellent editorial assistance. This work was supported by Advanced Grant 20090506 from the European Research Council (ERC) to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Giacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Carrer, A., Giacca, M., Giacca, M. (2013). Molecular Parameters for Prognostic and Predictive Assessment in Colorectal Cancer. In: de Manzini, N. (eds) Rectal Cancer. Updates in Surgery. Springer, Milano. https://doi.org/10.1007/978-88-470-2670-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2670-4_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2669-8

  • Online ISBN: 978-88-470-2670-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics