Skip to main content
Log in

Molecular polymorphism of β-fructosidase SUC genes in the Saccharomyces yeasts

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The molecular polymorphism of SUC genes that encode β-fructosidase has been investigated in the yeast genus Saccharomyces. We have determined the nucleotide sequences of subtelomeric SUC3, SUC5, SUC7, SUC8, SUC9, and SUC10 genes of S. cerevisiae and the SUCa gene of S. arboricola. Comparisons of the nucleotide sequences of all known SUC genes revealed the predominance of C → T transitions in the third codon position, which were silent. The amino acid sequences of β-fructosidases studied have identity of 88–100%. SUCa (S. arboricola) and SUCb (S. bayanus) proteins, which had amino acid identity with other SUC proteins of less than 92%, were the most divergent. It was determined that accumulation of the polymeric SUC genes takes place in industrial populations of S. cerevisiae, while the other Saccharomyces species (S. arboricola, S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, and S. paradoxus) each harbor only one SUC gene. Subtelomeric repeats of β-fructosidase SUC genes could appear in the genome of S. cerevisiae under the effect of selection in the course of their domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goffeau A., Barrell B.G., Barnett J.A. 1981. The utilization of disaccharides and some other sugars by yeasts. Adv. Carbhydr. Chem. Biochem. 39, 347–404.

    Article  Google Scholar 

  2. Badotti F., Dário M.G., Alves S.L., Jr., Cordioli M.L., Miletti L.C., de Araujo P.S., Stambuk B.U. 2008. Switching the mode of sucrose utilization by Saccharomyces cerevisiae. Microb. Cell Fact. 7, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Naumov G.I., Naumoff D.G. 2012. Molecular genetic differentiation of yeast α-glucosidases: maltase and isomaltase. Microbiology (Moscow). 81, 276–280.

    Article  CAS  Google Scholar 

  4. Carlson M., Botstein D. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell. 28, 145–154.

    Article  PubMed  CAS  Google Scholar 

  5. Carlson M., Botstein D. 1983. Organization of the SUC gene family in Saccharomyces. Mol. Cell. Biol. 3, 351–359.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Carlson M., Celenza J.L., Eng F.J. 1985. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol. Cell. Biol. 5, 2894–2902.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Sarokin L., Carlson M. 1985. Comparison of two yeast invertase genes: Conservation of the upstream regulatory region. Nucleic Acids Res. 13, 6089–6103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Sarokin L., Carlson M. 1986. Short repeated elements in the upstream regulatory region of the SUC2 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 2324–2333.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Mortimer R.K., Contopoulou C.R., King J.S. 1992. Genetic and physical maps of Saccharomyces cerevisiae. Yeast. 8, 817–902.

    Article  PubMed  CAS  Google Scholar 

  10. Naumov G.I., Naumova E.S. 2010. Comparative genetics of yeasts. A novel β-fructosidase gene SUC8 in Saccharomyces cerevisiae. Russ. J. Genet. 46, 323–330.

    Article  CAS  Google Scholar 

  11. Naumov G.I., Naumova E.S. 2010. Polygenic control for fermentation of β-fructosides in the yeast Saccharomyces cerevisiae: New genes SUC9 and SUC10. Microbiology (Moscow). 79, 160–166.

    Article  CAS  Google Scholar 

  12. Naumov G.I., Naumova E.S., Lantto R.A., Louis E.J., Korhola M. 1992. Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: Electrophoretic karyotypes. Yeast. 8, 599–612.

    Article  PubMed  CAS  Google Scholar 

  13. Naumov G.I., Naumova E.S., Sancho E.D., Korhola M.P. 1996. Polymeric SUC genes in natural populations of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 135, 31–35.

    Article  PubMed  CAS  Google Scholar 

  14. Naumova E.S., Korshunova I.V., Jespersen L., Naumov G.I. 2003. Molecular genetic identification of Saccharomyces sensu stricto strains from African sorghum beer. FEMS Yeast Res. 3, 177–184.

    Article  PubMed  CAS  Google Scholar 

  15. Ness F., Aigle M. 1995. RTM1: A member of a new family of telomeric repeated genes in yeast. Genetics. 140, 945–956.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Denayrolles M., de Villechenon E.P., Lonvaud-Funel A., Aigle M. 1997. Incidence of SUC-RTM telomeric repeated genes in brewing and wild wine strains of Saccharomyces. Curr. Genet. 31, 457–461.

    Article  PubMed  CAS  Google Scholar 

  17. Gozalbo D., Hohmann S. 1989. The naturally occurring silent invertase structural gene SUC2 0 contains an amber stop codon that is occasionally read through. Mol. Gen. Genet. 216, 511–516.

    Article  PubMed  CAS  Google Scholar 

  18. Naumov G.I., James S.A., Naumova E.S., Louis E.J., Roberts I.N. 2000. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae. Int. J. Syst. Evol. Microbiol. 50, 1931–1942.

    PubMed  CAS  Google Scholar 

  19. Kurtzman C.P. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces, and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma, and Zygotorulaspora. FEMS Yeast Res. 4, 233–245.

    Article  PubMed  CAS  Google Scholar 

  20. Vaughan-Martini A., Martini A. 2011. Saccharomyces Meyen ex Reess (1870). In: The Yeasts: A Taxonomic Study. Eds. Kurtzman C.P., Fell J.W., Boekhout T. Amsterdam: Elsevier, pp. 733–746.

    Chapter  Google Scholar 

  21. Goffeau A., Barrell B.G., Bussey H., et al. 1996. Life with 6000 genes. Science. 274, 546–567.

    Article  PubMed  CAS  Google Scholar 

  22. Kellis M., Patterson N., Endrizzi M., Birren B., Lander E.S. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 423, 241–254.

    Article  PubMed  CAS  Google Scholar 

  23. Liti G., Nguyen Ba A.N., Blythe M., Müller C.A., Bergström A., Cubillos F.A., Dafhnis-Calas F., Khoshraftar S., Malla S., Mehta N., Siow C.C., Warringer J., Moses A.M., Louis E.J., Nieduszynski C.A. 2013. High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. BMC Genomics. 14, 69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Korshunova I.V., Naumova E.S., Naumov G.I. 2005. Comparative molecular-genetic analysis of the betafructosidases of yeasts Saccharomyces. Mol. Biol. (Moscow). 39, 366–371.

    Article  CAS  Google Scholar 

  25. Wang S.A., Bai F.Y. 2008. Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int. J. Syst. Evol. Microbiol. 58, 510–514.

    Article  PubMed  CAS  Google Scholar 

  26. Naumov G.I., Lee C.-F., Naumova E.S. 2013. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: S. arboricola, S. cerevisiae, and S. kudriavzevii. Antonie van Leeuwenhoek. 103, 217–228.

    Article  PubMed  CAS  Google Scholar 

  27. Naumova E.S., Sadykova A. Zh., Martynenko N.N., Naumov G.I. 2013. Molecular genetic characteristics of Saccharomyces cerevisiae distillers’ yeasts. Microbiology (Moscow). 82, 175–185.

    Article  CAS  Google Scholar 

  28. Taussing R., Carlson M. 1983. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 11, 1943–1954.

    Article  Google Scholar 

  29. Hohmann S., Gozalbo D. 1988. Structural analysis of the 5’ regions of yeast SUC genes revealed analogous palindromes in SUC, MAL and GAL. Mol. Gen. Genet. 211, 446–454.

    Article  PubMed  CAS  Google Scholar 

  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Fischer G., James S.A., Roberts I.N., Oliver S.G., Louis E.S. 2000. Chromosomal evolution in Saccharomyces. Nature. 405, 451–454.

    Article  PubMed  CAS  Google Scholar 

  32. Delorme M.O., Hénaut A., Vigier P. 1988. Mutations in the NAM2 genes of Saccharomyces cerevisiae and S. douglasii are clustered non-randomly as a result of the nucleic acid sequence and not on the protein. Mol. Gen. Genet. 213, 310–314.

    Article  CAS  Google Scholar 

  33. Herbert C.J., Dujardin G., Labouesse M., Slonimski P.P. 1988. Divergence of the mitochondrial leucyl tRNA synthetase genes in two closely related yeasts, Saccharomyces cerevisiae and Saccharomyces douglasii: A paradigm of incipient evolution. Mol. Gen. Genet. 213, 297–309.

    Article  PubMed  CAS  Google Scholar 

  34. Herbert C.J., Macadre C., Bécan A-M., Lazowska J., Slonimski P.P. 1992. The MRS1 gene of S. douglasii: Co-evolution of mitochondrial introns and specific splicing proteins encoded by nuclear genes. Gene Expr. 2, 203–214.

    PubMed  CAS  Google Scholar 

  35. Adjiri A., Chanet R., Mezard C., Fabre F. 1994. Sequence comparison of the ARG4 chromosomal regions from the two related yeasts, Saccharomyces cerevisiae and Saccharomyces douglasii. Yeast. 10, 309–317.

    Article  PubMed  CAS  Google Scholar 

  36. Kurtzman C.P., Robnett C.J. 2003. Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432.

    Article  PubMed  CAS  Google Scholar 

  37. Oda Yu., Micumo D., Leo F., Urashima T. 2010. Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences. J. Gen. Appl. Microbiol. 56, 355–358.

    Article  PubMed  CAS  Google Scholar 

  38. Hohmann S., Gozalbo D. 1989. Comparison of the nucleotide sequences of a yeast gene family: 1. Distribution and spectrum of spontaneous base substitutions. Mutation Res. 215, 79–87.

    Article  PubMed  CAS  Google Scholar 

  39. Naumov G.I., Naumova E.S., Masneuf-Pomarède I. 2010. Genetic identification of new biological species Saccharomyces arboricolus Wang et Bai. Antonie van Leeuwenhoek. 98, 1–7.

    Article  PubMed  Google Scholar 

  40. Zakian V.A. 1996. Structure, function, and replication of Saccharomyces cerevisiae telomeres. Ann. Rev. Genet. 30, 141–172.

    Article  PubMed  CAS  Google Scholar 

  41. Louis E.J., Haber J.E. 1992. The structure and evolution of subtelomeric Y’ repeats in Saccharomyces cerevisiae. Genetics. 131, 559–574.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Louis E.J., Naumova E.S., Lee A., Naumov G., Haber J.E. 1994.The chromosome end in yeast: Its mosaic nature and influence on recombinational dynamics. Genetics. 136, 789–802.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Naumov G.I., Naumova E.S. 2011. Comparative genetics of yeast Saccharomyces cerevisiae: Chromosomal translocations carrying the SUC2 marker. Russ. J. Genet. 47, 147–152.

    Article  CAS  Google Scholar 

  44. Codón A.C., Benítez T., Korhola M. 1997. Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker’s yeasts. Curr. Genet. 32, 247–259.

    Article  PubMed  Google Scholar 

  45. Gozalbo D., del Castillo Agudo L. 1994. Differential expression of SUC genes: A question of bases. FEMS Microbiol. Rev. 15, 1–7.

    Article  PubMed  CAS  Google Scholar 

  46. Hohmann S., Zimmermann F.K. 1986. Cloning and expression on a multicopy vector of five invertase genes of Saccharomyces. Curr. Genet. 11, 217–225.

    Article  PubMed  CAS  Google Scholar 

  47. Hohmann S. 1987. A region in the yeast genome which favours multiple integration of DNA via homologous recombination. Curr. Genet. 12, 519–526.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Naumov.

Additional information

Original Russian Text © E.S. Naumova, A.Zh. Sadykova, N.N. Martynenko, G.I. Naumov, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 4, pp. 658–668.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumova, E.S., Sadykova, A.Z., Martynenko, N.N. et al. Molecular polymorphism of β-fructosidase SUC genes in the Saccharomyces yeasts. Mol Biol 48, 573–582 (2014). https://doi.org/10.1134/S0026893314040086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314040086

Keywords

Navigation