Skip to main content
Log in

Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

To study the evolution of the polymeric β-fructosidase (invertase) genes (SUC) of yeasts Saccharomyces, new SUC gene of S. cariocanus was cloned and sequenced and the nucleotide and amino acid sequences were compared for all known β-fructosidases of Saccharomyces species. The proteins showed 90–97% homology. The most divergent was S. bayanus β-fructosidase. The results testified again to high conservation of yeast β-fructosidases. Transitions C-T prevail in the total spectrum of nucleotide substitutions observed in the coding regions of the SUC genes; most of these transitions are in the third codon position and cause no changes in the amino acid sequences of the encoded proteins. The six Saccharomyces species each carry one (probably, non-telomeric) β-fructosidase gene. SUC is on chromosome IX in S. cerevisiae, S. bayanus, S. kudriavzevii, S. mikatae, and S. paradoxus and in a translocation region on chromosome XV in S. cariocanus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H., Oliver S.G. 1996. Life with 6000 genes. Science. 274, 546–567.

    Article  CAS  PubMed  Google Scholar 

  2. Kellis M., Patterson N., Endrizzi M., Birren B., Lander E.S. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 423, 241–254.

    Article  CAS  PubMed  Google Scholar 

  3. Charron M.J., Read E., Haut S.R., Michels C.A. 1989. Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics. 122, 307–316.

    CAS  PubMed  Google Scholar 

  4. Naumov G.I., Naumova E.S., Louis E.J. 1995. Genetic mapping of the α-galactosidase MEL gene family on right and left telomeres of Saccharomyces cerevisiae. Yeast. 11, 481–483.

    CAS  PubMed  Google Scholar 

  5. Carlson M., Botstein D. 1983. Organization of the SUC gene family in Saccharomyces. Mol. Cell. Biol. 3, 351–359.

    CAS  PubMed  Google Scholar 

  6. Carlson M., Celenza J.L., Eng F.J. 1985. Evolution of the dispersed SUC gene family of Saccharomyces by rear-rangements of chromosome telomeres. Mol. Cell. Biol. 5, 2894–2902.

    CAS  PubMed  Google Scholar 

  7. Gozalbo D., Hohmann S. 1989. The naturally occurring silent invertase structural gene suc2 0 contains an amber stop codon that is occasionally read through. Mol. Gen. Genet. 216, 511–516.

    CAS  PubMed  Google Scholar 

  8. Naumov G.I., Naumova E.S., Sancho E.D., Korhola M.P. 1996. Polymeric SUC genes in natural populations of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 135, 31–35.

    CAS  PubMed  Google Scholar 

  9. Ness F., Aigle M. 1995. RTM1: A member of a new family of telomeric repeated genes in yeast. Genetics. 140, 945–956.

    CAS  PubMed  Google Scholar 

  10. Denayrolles M., de Villechenon E.P., Lonvaud-Funel A., Aigle M. 1997. Incidence of SUC-RTM telomeric repeated genes in brewing and wild wine strains of Saccharomyces. Curr. Genet. 31, 457–461.

    CAS  PubMed  Google Scholar 

  11. Taussing R., Carlson M. 1983. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 11, 1943–1954.

    PubMed  Google Scholar 

  12. Willstatter R., 1928. Uber Saccharase. Untersuchungen uber Enzyme, vol. 1. Berlin.

  13. Martin I., Debarbouille M., Ferrari E., Klier A., Rapoport G. 1987. Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol. Gen. Genet. 208, 177–184.

    CAS  PubMed  Google Scholar 

  14. Naumov G.I., Naumova E.S., Kondratieva V.I., Bulat S.A., Mironenko N.V., Mendonca-Hagler L.C., Hagler A.N. 1997. Genetic and molecular delineation of three sibling species in the Hansenula polymorpha complex. Syst. Appl. Microbiol. 20, 50–56.

    Google Scholar 

  15. Molecular and Clinical Diagnosis: Methods. 1999. Ed. Harrington C. Moscow: Mir.

    Google Scholar 

  16. Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  17. Naumov G., Turakainen H., Naumova E., Aho S., Korhola M. 1990. A new family of polymorphic genes in Saccharomyces cerevisiae: α-galactosidase genes MEL1-MEL7. Mol. Gen. Genet. 224, 119–128.

    CAS  PubMed  Google Scholar 

  18. Felsenstein J. 1993. PHYLIP (Phylogenetic Inference Package), version 3.5c. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  19. Naumov G.I., Korhola M., Naumova E.S., Beritashvili D.R., Lantto R. 1990. Molecular karyotyping of biological species Saccharomyces cerevisiae, S. paradoxus, and S. bayanus. Dokl. Akad. Nauk SSSR. 311, 1242–1246.

    CAS  PubMed  Google Scholar 

  20. Naumov G.I., Naumova E.S., Lantto R.A., Louis E.J., Korhola M. 1992. Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: Electrophoretic karyotypes. Yeast. 8, 599–612.

    CAS  PubMed  Google Scholar 

  21. Ryu S.-L., Murooka Y., Kaneko Y. 1996. Genomic reorganization between two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae. Yeast. 12, 757–764.

    CAS  PubMed  Google Scholar 

  22. Ryu S.-L., Murooka Y., Kaneko Y. 1998. Reciprocal translocation at duplicated RPL2 loci might cause speciation of Saccharomyces bayanus and Saccharomyces cerevisiae. Curr. Genet. 33, 345–351.

    CAS  PubMed  Google Scholar 

  23. Fischer G., James S.A., Roberts I.N., Oliver S.G., Louis E.J. 2000. Chromosomal evolution in Saccharomyces. Nature. 405, 451–454.

    Article  CAS  PubMed  Google Scholar 

  24. Naumov G.I., Naumova E.S., Hagler A.N., Mendonca-Hagler L.C., Louis E.J. 1995. A new genetically isolated population of the Saccharomyces sensu stricto complex from Brazil. Ant. van Leeuwenhoek. 67, 351–355.

    CAS  Google Scholar 

  25. Delorme M.O., Henaut A., Vigier P. 1988. Mutations in the NAM2 genes of Saccharomyces cerevisiae and S. douglasii are clustered non-randomly as a result of the nucleic acid sequence and not on the protein. Mol. Gen. Genet. 213, 310–314.

    CAS  Google Scholar 

  26. Herbert C.J., Dujardin G., Labouesse M., Slonimski P.P. 1988. Divergence of the mitochondrial leucyl tRNA synthetase genes in two closely related yeasts Saccharomyces cerevisiae and Saccharomyces douglasii: A paradigm of incipient evolution. Mol. Gen. Genet. 213, 297–309.

    CAS  PubMed  Google Scholar 

  27. Herbert C.J., Macadre C., Becan A.-M., Lazowska J., Slonimski P.P. 1992. The MRS1 gene of S. douglasii: Co-evolution of mitochondrial introns and specific splicing proteins encoded by nuclear genes. Gene Expr. 2, 203–214.

    CAS  PubMed  Google Scholar 

  28. Adjiri A., Chanet R., Mezard C., Fabre F. 1994. Sequence comparison of the ARG4 chromosomal regions from the two related yeasts, Saccharomyces cerevisiae and Saccharomyces douglasii. Yeast. 10, 309–317.

    CAS  PubMed  Google Scholar 

  29. Hohmann S., Gozalbo D. 1989. Comparison of the nucleotide sequences of a yeast gene family: 1. Distribution and spectrum of spontaneous base substitutions. Mutation Res. 215, 79–87.

    CAS  PubMed  Google Scholar 

  30. Reddy V.A., Maley F. 1990. Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J. Biol. Chem. 265, 10817–10820.

    CAS  PubMed  Google Scholar 

  31. Reddy A., Maley F. 1996. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J. Biol. Chem. 271, 13953–13958.

    CAS  PubMed  Google Scholar 

  32. Naumov D.G., Doroshenko V.G. 1998. β-Fructosidases: A new family of glycosyl hydrolases. Mol. Biol. 32, 902–907.

    CAS  Google Scholar 

  33. Naumov G.I., James S.A., Naumova E.S., Louis E.J., Roberts I.N. 2000. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int. J. Syst. Appl. Microbiol. 50, 1931–1942.

    CAS  Google Scholar 

  34. Kurtzman C.P. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 413–419.

Original Russian Text Copyright © 2005 by Korshunova, Naumova, Naumov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korshunova, I.V., Naumova, E.S. & Naumov, G.I. Comparative Molecular Genetic Analysis of β-Fructosidases of Yeasts Saccharomyces . Mol Biol 39, 366–371 (2005). https://doi.org/10.1007/s11008-005-0051-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0051-7

Key words

Navigation