Skip to main content
Log in

Single-Stage Bioconversion of Phytosterol into Testosterone by Recombinant Strains of Mycolicibacterium neoaurum

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A plasmid containing the genes encoding a fungal 17β-hydroxysteroid dehydrogenase, which ca-talyzes the reduction of 17-oxo group, and a mycobacterial glucose-6-phosphate dehydrogenase, which promotes the recycling of the essential coenzyme NAD(P)H, was constructed. Its constitutive expression in well-studied Mycolicibacterium neoaurum strains made it possible to increase the yield of C-17 hydroxysteroids significantly. In particular, recombinant strains created on the basis of M. neoaurum VKM Ac-1815D and M. neoaurum NRRL B-3805 ΔkstD exhibited predominant accumulation of testosterone, while the strain based on M. neoaurum VKM Ac-1816D accumulated 1(2)-dehydrotestosterone and testosterone simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Borrego, S., Niubó, E., Ancheta, O., and Espinosa, M.E., Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy, Tissue Cell, 2000, vol. 32, pp. 494–590.

    Article  CAS  PubMed  Google Scholar 

  2. Bragin, E., Shtratnikova, V., Dovbnya, D., Schelkunov, M., Pekov, Y., Malakho, S., Egorova, O., Ivashina, T., Sokolov, S., Ashapkin, V., and Donova, M., Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains, J. Steroid Biochem. Mol. Biol., 2013, vol. 138, pp. 41–53.

    Article  CAS  PubMed  Google Scholar 

  3. Daffe, M., McNeil, M., and Brennan, P.J., Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp., Carbohydr. Res., 1993, vol. 249, pp. 383–398.

    Article  CAS  PubMed  Google Scholar 

  4. Donova, M.V., Current trends and perspectives in microbial bioconversions of steroids, in Microbial Steroids. Methods in Molecular Biology, Barreiro, C. and Barredo, J.L., Eds., New York: Humana, 2023, vol. 2704, pp. 3–21.

    Google Scholar 

  5. Egorova, O., Nikolayeva, V., Sukhodolskaya, G., and Donova, M., Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium sp., J. Mol. Catal. B. Enzym., 2009, vol. 57, pp. 198–203.

    Article  CAS  Google Scholar 

  6. Fernandez-Cabezon, L., Galan, B., and Garcia, J.L., Engineering Mycobacterium smegmatis for testosterone production, Microb. Biotechnol., 2017, vol. 10, pp. 151–161.

    Article  CAS  PubMed  Google Scholar 

  7. Fufaeva, S., Dovbnya, D., Ivashina, T., Shutov, A., and Donova, M., Reconstruction of steroid 1(2)-dehydrogenation system from Nocardioides simplex VKM Ac-2033D in Mycolicibacterium hosts, Microorganisms, 2023, vol. 11, p. 2720. https://doi.org/10.3390/microorganisms1111272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia, J.L., Uhia, I., and Galan, B., Catabolism and biotechnological applications of cholesterol degrading bacteria, Microb. Biotechnol., 2012, vol. 5, pp. 679–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He, K., Sun, H., and Song, H., Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9-hydroxy-4-androstene-3,17-dione, Biotechnol. Lett., 2018, vol. 40, pp. 673–678.

    Article  CAS  PubMed  Google Scholar 

  10. Hung, B., Falero, A., Llanes, N., Pérez, C., and Ramirez, M.A., Testosterone as biotransformation product in steroid conversion by Mycobacterium sp., Biotechnol. Lett., 1994, vol. 16, pp. 497–500.

    Article  CAS  Google Scholar 

  11. Karpov, M.V., Nikolaeva, V.M., Fokina, V.V., Shutov, A.A., Kazantsev, A.V., Strizhov, N.I., and Donova, M.V., Creation and functional analysis of Mycolicibacterium smegmatis recombinant strains carrying the bacillary cytochromes CYP106A1 and CYP106A2 genes, Appl. Biochem. Microbiol., 2022, vol. 58, pp. 947–957.

    Article  CAS  Google Scholar 

  12. Kumar, R., Dahiya, J.S., Singh, D., and Nigam, P., Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor, Bioresour. Technol., 2001, vol. 78, pp. 209–211.

    Article  CAS  PubMed  Google Scholar 

  13. Lo, C.K., Pan, C.P., and Liu, W.H., Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp., J. Ind. Microbiol. Biotechnol., 2002, vol. 28, pp. 280–283.

    Article  CAS  PubMed  Google Scholar 

  14. Loraine, J.K. and Smith, M.C.M., Genetic techniques for manipulation of the phytosterol biotransformation strain Mycobacterium neoaurum NRRL B-3805, in Microbial Steroids, Methods in Molecular Biology, Barredo, J.L., Herráiz, I., Eds., New York: Springer New York, 2017, vol. 1645, pp. 93–108.

    Google Scholar 

  15. Poshekhontseva, V.Y., Strizhov, N.I, Karpov, M.V., Nikolaeva, V.M., Kazantsev, A.V., Sazonova, O.I., Shutov, A.A., and Donova, M.V., Expression of synthetic cyp102A1-LG23 gene and functional analysis of recombinant cytochrome P450 BM3-LG23 in the actinobacterium Mycolicibacterium smegmatis, Biochemistry (Moscow), 2023, vol. 88, no.9, pp. 1347–1355.

    CAS  PubMed  Google Scholar 

  16. Shao, M., Zhao, Y., Liu, Y., Yang, T., Xu, M., Zhang, X., and Rao, Z., Intracellular environment improvement of Mycobacterium neoaurum for enhancing androst-1,4-diene-3,17-dione production by manipulating NADH and reactive oxygen species levels, Molecules, 2019, vol. 24, p. 3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strizhov, N., Karpov, M., Sukhodolskaya, G., Nikolayeva, V., Fokina, V., Shutov, A., and Donova, M., Development of Mycobacterial strains producing testosterone, Vestsi Nats. Akad. Navuk Belarus (Chem. Series), 2016, no. 3, pp. 57–58.

  18. Su, L., Shen, Y., Gao, T., Cui, L., Luo, J., and Wang, M., Regulation of NAD (H) pool by overexpression of nicotinic acid phosphoribosyltransferase for AD (D) production in Mycobacterium neoaurum, Lect. Notes Electr. Eng., 2018, vol. 444, pp. 357–364.

    Article  Google Scholar 

  19. Szentirmai, A., Microbial physiology of sidechain degradation of sterols, J. Industr. Microbiol., 1990, vol. 6, pp. 101–116.

    Article  CAS  Google Scholar 

  20. Tekucheva, D.N., Nikolayeva, V.M., Karpov, M.V., Timakova, T.A., Shutov, A.A., and Donova, M.V., Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: “one-pot,” two modes, Bioresour. Bioprocess, 2022, vol. 9, p. 116.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xiong, L.B., Liu, H.H., Zhao, M., Liu, Y.J., Song, L., Xu, Y.X., Wang, F.Q., and Wei, D.Z., Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum, Microb. Cell Factories, 2020, vol. 19, pp. 1–11.

    Article  Google Scholar 

  22. Zhou, X., Zhang, Y., Shen, Y., Zhang, X., Zan, Z., Xia, M., Luo, J., and Wang, M., Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle, Bioresour. Technol., 2020, vol. 309, p. 123307.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 21-64-00024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Tekucheva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekucheva, D.N., Karpov, M.V., Fokina, V.V. et al. Single-Stage Bioconversion of Phytosterol into Testosterone by Recombinant Strains of Mycolicibacterium neoaurum. Microbiology 93, 134–138 (2024). https://doi.org/10.1134/S0026261723603913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723603913

Keywords:

Navigation