Skip to main content
Log in

Transformation of Methoxylated Aromatic Compounds by Anaerobic Microorganisms

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2023

This article has been updated

Abstract

Methoxylated aromatic compounds (MAC) are widely distributed in various habitats and are components of lignin, the second most abundant biopolymer on Earth. This review summarizes the results on microbiology, ecology, and biochemistry of anaerobic MAC catabolism in bacteria and archaea. We analyzed the genomes of 46 prokaryotes anaerobically degrading MAC for the presence of O-demethylase, CO-dehydrogenase/acetyl-CoA synthase, and benzoyl-CoA reductase genes, which determine the possibility of methoxydotrophic growth. It was found that facultative anaerobes of the phylum Pseudomonadota do not have any known genetic determinants of anaerobic O-demethylase reaction as well as of aromatic ring reduction. Thus, the MAC transformation by anaerobic microorganisms can be carried out by diverse biochemical mechanisms and probably plays a more significant role in the global carbon cycle than previously supposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.

Similar content being viewed by others

Change history

REFERENCES

  1. Abdelaziz, O.Y., Brink, D.P., Prothmann, J., Ravi, K., Sun, M., García-Hidalgo, J., Sandahl, M., Hulteberg, C.P., Turner, C., Lidén, G., and Gorwa-Grauslund, M.F., Biological valorization of low molecular weight lignin, Biotechnol. Adv., 2016, vol. 34, pp. 1318–1346.

    Article  CAS  PubMed  Google Scholar 

  2. Ahring, B.K., Biswas, R., Ahamed, A., Teller, P.J., and Uellendahl, H., Making lignin accessible for anaerobic digestion by wet-explosion pretreatment, Bioresour. Technol., 2015, vol. 175, pp. 182–188.

    Article  CAS  PubMed  Google Scholar 

  3. Allen, T.D., Caldwell, M.E., Lawson, P.A., Huhnke, R.L., and Tanner, R.S., Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2483–2489.

    Article  CAS  PubMed  Google Scholar 

  4. Ander, P. and Eriksson, K.B., Lignin degradation and utilization by micro-organisms, Prog. Ind. Microbiol. 1978, vol. 14, pp. 1–58.

    CAS  Google Scholar 

  5. Azzena, U., Denurra, T., Melloni, G., Fenude, E., and Rassu, G., Electron-transfer-induced reductive demethoxylation of anisole: evidence for cleavage of a radical anion, J. Org. Chem., 1992, vol. 57, pp. 1444–1448.

    Article  CAS  Google Scholar 

  6. Bache, R. and Pfennig, N., Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields, Arch. Microbiol., 1981, vol. 130, pp. 255–261.

    Article  CAS  Google Scholar 

  7. Bak, F., Finster, K., and Rothfuss, F., Formation of dimethyl sulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria, Arch. Microbiol., 1992, vol. 159, pp. 529–534.

    Article  Google Scholar 

  8. Berman, M.H. and Frazer, A.C., Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers, Appl. Environ. Microbiol., 1992, vol. 58, pp. 925–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernhardt, F.H., Ruf, H.H., and Staudinger, H., Purification of a 4-methoxybenzoate O-demethylase from Pseudomonas putida, Biol. Chem., 1971, vol. 352, pp. 1091–1099.

    CAS  Google Scholar 

  10. Boll, M., Dearomatizing benzene ring reductases, J. Mol. Microbiol. Biotechnol., 2005, vol. 10, pp. 132–142.

    CAS  PubMed  Google Scholar 

  11. Boll, M. and Fuchs, G., Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172, Eur. J. Biochem., 1995, vol. 234, pp. 921–933.

    Article  CAS  PubMed  Google Scholar 

  12. Boll, M., Fuchs, G., Meier, C., Trautwein, A., and Lowe, D.J., EPR and Mössbauer studies of benzoyl-CoA reductase, J. Biol. Chem., 2000, vol. 275, pp. 31857–31868.

    Article  CAS  PubMed  Google Scholar 

  13. Braune, A. and Blaut, M., Catenibacillus scindens gen. nov., sp. nov., a C-deglycosylating human intestinal representative of the Lachnospiraceae, Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 3356–3361.

    Article  CAS  PubMed  Google Scholar 

  14. Breznak, J.A., Switzer, J.M., and Seitz, H.J., Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites, Arch. Microbiol., 1988, vol. 150, pp. 282–288.

    Article  CAS  Google Scholar 

  15. Brink, D.P., Ravi, K., Lidén, G., and Gorwa-Grauslund, M.F., Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database, Appl. Microbiol. Biotechnol., 2019, vol. 103, pp. 3979–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brunow, G. and Lundquist, K., Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes), in Lignin and Lignans, Heitner, C., Dimmel, D., and Schmidt, J., Eds., CRC, 2010, pp. 267–299.

    Google Scholar 

  17. Chen, J.X., Deng, C.Y., Zhang, Y.T., Liu, Z.M., Wang, P.Z., Liu, S.L., Qian, W., and Yang, D.H., Cloning, expression, and characterization of a four-component O‑demethylase from human intestinal bacterium Eubacterium limosum ZL-II, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 9111–9124.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, L., Qiu, T.L., Yin, X.B., Wu, X.L., Hu, G.Q., Deng, Y., and Zhang, H., Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov., Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2964‒2969.

    Article  CAS  PubMed  Google Scholar 

  19. Christiansen, N. and Ahring, B.K., Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium, Int. J. Syst. Evol. Microbiol., 1996, vol. 46, pp. 442‒448.

    Google Scholar 

  20. Conrad, R., The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbiol. Rep., 2009, vol. 1, pp. 285–292.

    Article  CAS  PubMed  Google Scholar 

  21. Daniel, S.L., Keith, E.S., Yang, H., Lin, Y.S., and Drake, H.L., Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity, Biochem. Biophys. Res. Commun., 1991, vol. 180, pp. 416–422.

    Article  CAS  PubMed  Google Scholar 

  22. Defnoun, S., Labat, M., Ambrosio, M., Garcia, J.L., and Patel, B.K., Papillibacter cinnamivorans gen. nov., sp. nov., a cinnamate-transforming bacterium from a shea cake digester, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  23. Dehning, I., Stieb, M., and Schink, B., Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate and succinate, Arch. Microbiol., 1989, vol. 151, pp. 421–426.

    Article  CAS  Google Scholar 

  24. DeWeerd, K.A., Mandelco, L., Tanner, R.S., Woese, C.R., and Suflita, J.M., Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium, Arch. Microbiol., 1990, vol. 154, pp. 23–30.

    Article  CAS  Google Scholar 

  25. DeWeerd, K.A., Saxena, A., Nagle, D.P., Jr., and Suflita, J.M., Metabolism of the 18 O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria, Appl. Environ. Microbiol., 1988, vol. 54, pp. 1237–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dürichen, H., Diekert, G., and Studenik, S., Redox potential changes during ATP-dependent corrinoid reduction determined by redox titrations with europium(II)-DTPA, Protein Sci., 2019, vol. 28, pp. 1902–1908.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Engelmann, T., Kaufmann, F., and Diekert, G., Isolation and characterization of a veratrol:corrinoid protein methyltransferase from Acetobacterium dehalogenans, Arch. Microbiol., 2001, vol. 175, pp. 376–383.

    Article  CAS  PubMed  Google Scholar 

  28. Frazer, A.C., O-Demethylation and other transformations of aromatic compounds by acetogenic bacteria, in Acetogenesis, Drake, H.L., Ed., Chapman & Hall Microbiol. Ser. Boston: Springer, 1994, pp. 445–483.

  29. Grbić-Galić, D., Fermentative and oxidative transformation of ferulate by a facultatively anaerobic bacterium isolated from sewage sludge, Appl. Environ. Microbiol., 1985, vol. 50, pp. 1052–1057.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grech-Mora, M.L., Fardeau, M.L., Patel, B.K.C., Ollivier, B., Rimbault, A., Prensier, G., Garcia, J.L., and Garnier-Sillam, E., Isolation and characterization of Sporobacter termitidis gen.nov., sp. nov., from the digestive tract of the wood-feeding termite, Int. J. Syst. Evol. Microbiol., 1996, vol. 46, pp. 512–518.

    Google Scholar 

  31. Greening, R.C. and Leedle, J.A., Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen, Arch. Microbiol., 1989, vol. 151, pp. 399–406.

    Article  CAS  PubMed  Google Scholar 

  32. Haddock, J.D. and Ferry, J.G., Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41, J. Biol. Chem., 1989, vol. 264, pp. 4423– 4427.

    Article  CAS  PubMed  Google Scholar 

  33. Hagel, J. and Facchini, P., Biochemistry and occurrence of O-demethylation in plant metabolism, Front. Physiol., 2010, vol. 1, p. 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Häggblom, M.M., Berman, M.H., Frazer, A.C., and Young, L.Y., Anaerobic O-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum, Biodegradation, 1993, vol. 4, pp. 107–114.

    Article  Google Scholar 

  35. Hatcher, P.G. and Clifford, D.J., The organic geochemistry of coal: from plant materials to coal, Org. Geochem., 1997, vol. 27, pp. 251–274.

    Article  CAS  Google Scholar 

  36. Harwood, C.S., Burchhardt, G., Herrmann, H., and Fuchs, G., Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway, FEMS Microbiol. Rev., 1999, vol. 22, pp. 4439–4458.

    Google Scholar 

  37. Harwood, C.S. and Gibson, J., Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris, Appl. Environ. Microbiol., 1988, vol. 54, pp. 712–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hattori, S., Kamagata, Y., Hanada, S., and Shoun, H., Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  39. Healy, J.B. and Young, L.Y., Anaerobic biodegradation of eleven aromatic compounds to methane, Appl. Environ. Microbiol., 1979, vol. 38, pp. 84–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmes, D.E., Risso, C., Smith, J.A., and Lovley, D.R., Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus, ISME J., 2012, vol. 6, pp. 146–157.

    Article  CAS  PubMed  Google Scholar 

  41. Kane, M.D. and Breznak, J.A., Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis, Arch. Microbiol., 1991, vol. 156, pp. 91–98.

    Article  CAS  PubMed  Google Scholar 

  42. Kaufmann, F., Wohlfarth, G., and Diekert, G., Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC, Arch. Microbiol., 1997, vol. 166, pp. 136–142.

    Article  Google Scholar 

  43. Kaufmann, F., Wohlfarth, G., and Diekert, G., O-demethylase from Acetobacterium dehalogenans—cloning, sequencing, and active expression of the gene encoding the corrinoid protein, Eur. J. Biochem., 1998a, vol. 257, pp. 515–521.

    Article  CAS  PubMed  Google Scholar 

  44. Kaufmann, F., Wohlfarth, G., and Diekert, G., O-demethylase from Acetobacterium dehalogenans—substrate specificity and function of the participating proteins, Eur. J. Biochem., 1998b, vol. 253, pp. 706–711.

    Article  CAS  PubMed  Google Scholar 

  45. Khomyakova, M.A., Merkel, A.Y., Kopitsyn, D.S., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Calorimonas adulescens gen. nov., sp. nov., an anaerobic thermophilic bacterium utilizing methoxylated benzoates, Int. J. Syst. Evol. Microbiol., 2020a, vol. 70, pp. 2066–2071.

    Article  CAS  PubMed  Google Scholar 

  46. Khomyakova, M., Merkel, A., Novikov, A., Klyukina, A., and Slobodkin, A., Alkalibacter mobilis sp. nov., an anaerobic bacterium isolated from a coastal lake, Int. J. Syst. Evol. Microbiol., 2021, vol. 71, p. 5174.

    Article  CAS  Google Scholar 

  47. Khomyakova, M.A., Merkel, A.Y., Petrova, D.A., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Alkalibaculum sporogenes sp. nov., isolated from a terrestrial mud volcano and emended description of the genus Alkalibaculum, Int. J. Syst. Evol. Microbiol., 2020b, vol. 70, pp. 4914–4919.

    Article  CAS  PubMed  Google Scholar 

  48. Kluge, C., Tschech, A., and Fuchs, G., Anaerobic metabolism of resorcyclic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium, Arch. Microbiol., 1990, vol. 155, pp. 68–74.

    Article  CAS  Google Scholar 

  49. Krumholz, L.R. and Bryant, M.P., Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate, Int. J. Syst. Bacteriol., 1985, vol. 35, pp. 454–456.

    Article  CAS  Google Scholar 

  50. Krumholz, L.R. and Bryant, M.P., Syntrophococcus sucromutans sp. nov., gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacter as electron acceptor systems, Arch. Microbiol., 1986, vol. 143, pp. 313–318.

    Article  CAS  Google Scholar 

  51. Kuever, J., Rainey, F.A., and Hippe, H., Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1801–1808.

    Article  CAS  PubMed  Google Scholar 

  52. Kuhner, C.H., Frank, C., Griesshammer, A., Schmittroth, M., Acker, G., Gössner, A., and Drake, H.L., Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil, Int. J. Syst. Bacteriol. 1997, vol. 47, pp. 352–358.

    Article  CAS  PubMed  Google Scholar 

  53. Kurth, J.M., Nobu, M.K., Tamaki, H., de Jonge, N., Berger, S., Jetten, M.S.M., Yamamoto, K., Mayumi, D., Sakata, S., Bai, L., Cheng, L., Nielsen, J.L., Kamagata, Y., Wagner, T., and Welte, C.U., Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds, ISME J., 2021, vol. 15, pp. 3549–3565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kurth, J.M., Op den Camp, H.J.M., and Welte, C.U., Several ways one goal-methanogenesis from unconventional substrates, Appl. Microbiol. Biotechnol., 2020, vol. 104, pp. 6839–6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Küsel, K., Dorsch, T., Acker, G., Stackebrandt, E., and Drake, H.L., Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 537–546.

    Article  PubMed  Google Scholar 

  56. Lechtenfeld, M., Heine, J., Sameith, J., Kremp, F, and Müller, V., Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii, Environ. Microbiol., 2018, vol. 20, pp. 4512–4525.

    Article  CAS  PubMed  Google Scholar 

  57. Lehmann, J. and Kleber, M., The contentious nature of soil organic matter, Nature, 2015, vol. 528, pp. 60–68.

    Article  CAS  PubMed  Google Scholar 

  58. Libes, S.M., The origin of petroleum in the marine environment, in Introduction to Marine Biogeochemistry, Amsterdam: Elsevier Sci., 2009, pp. 1–33.

    Google Scholar 

  59. Liesack, W., Back, F., Kreft, J.U., and Stackebrandt, E., Holophaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds, Arch. Microbiol., 1994, vol. 162, pp. 85–90.

    CAS  PubMed  Google Scholar 

  60. Lloyd, M.K., Trembath-Reichert, E., Dawson, K.S., Feakins, S.J., Mastalerz, M., Orphan, V.J., Sessions, A.L., and Eiler, J.M., Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane, Science, 2021, vol. 374, pp. 894–897.

    Article  CAS  PubMed  Google Scholar 

  61. Löffler, C., Kuntze, K., Vazquez, J.R., Rugor, A., Kung, J.W., Böttcher, A., and Boll, M., Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria, Environ. Microbiol., 2011, vol. 13, pp. 696–709.

    Article  PubMed  Google Scholar 

  62. Löffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Müller, J.A., Fullerton, H., Zinder, S.H., and Spormann, A.M., Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 625–635.

    Article  PubMed  Google Scholar 

  63. Lomans, B.P., Leijdekkers, P., Wesselink, J.-J., Bakkes, P., Pol, A., van der Drift, C., and Op den Camp, H.J.M., Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov., Appl. Environ. Microbiol., 2001, vol. 67, pp. 4017–4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lomans, B.P., Op den Camp, H.J., Pol, A., van der Drift, C., and Vogels, G.D., Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments, Appl. Environ. Microbiol., 1999, vol. 65, pp. 2116–2121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lomans, B.P., van der Drift, C., Pol, A., and Op den Camp, H.J., Microbial cycling of volatile organic sulfur compounds, Cell. Mol. Life Sci., 2002, vol. 59, pp. 575–588.

    Article  CAS  PubMed  Google Scholar 

  66. López Barragán, M.J., Carmona, M., Zamarro, M.T., Thiele, B., Boll, M., Fuchs, G., García, J.L., and Díaz, E., The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB, J. Bacteriol., 2004, vol. 186, pp. 5762–5774.

    Article  PubMed  Google Scholar 

  67. Lorowitz, W.H. and Bryant, M.P., Peptostreptococcus productus strain that grows rapidly with CO as the energy source, Appl. Environ. Microbiol., 1984, vol. 47, pp. 961–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, P., Huang, H., Sun, Y., Qiang, M., Zhu, Y., Cao, M., Peng, X., Yuan, B., and Feng, Z., Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions, Biodegradation, 2022, vol. 33, pp. 17–31.

    Article  CAS  PubMed  Google Scholar 

  69. Lux, M.F. and Drake, H.L., Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth, FEMS Microbiol. Lett., 1992, vol. 95, pp. 49–56.

    Article  CAS  Google Scholar 

  70. Masai, E., Katayama, Y., and Fukuda, M., Genetic and biochemical investigations on bacterial catabolic pathways for lignin derived aromatic compounds, Biosci. Biotechnol. Biochem., 2007, vol. 71, p. 1e15.

  71. Mayumi, D., Mochimaru, H., Tamaki, H., Yamamoto, K., Yoshioka, H., Suzuki, Y., Kamagata, Y., and Sakata, S., Methane production from coal by a single methanogen, Science, 2016, vol. 354, pp. 222–225.

    Article  CAS  PubMed  Google Scholar 

  72. Mechichi, T., Labat, M., Garcia, J.-L., Thomas, P., and Pate, B.K.C., Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester, Int. J. Syst. Bacteriol., 1999a, vol. 49, pp. 1741–1748.

    Article  CAS  PubMed  Google Scholar 

  73. Mechichi, T., Labat, M., Patel, B.K., Woo, T.H., Thomas, P., and Garcia, J.L., Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester, Int. J. Syst. Bacteriol., 1999b, vol. 49, pp. 1201–1209.

    Article  CAS  PubMed  Google Scholar 

  74. Mingo, F.S., Studenik, S., and Diekert, G., Conversion of phenyl methyl ethers by Desulfitobacterium spp. and screening for the genes involved, FEMS Microbiol. Ecol., 2014, vol. 90, pp. 783–790.

    Article  CAS  PubMed  Google Scholar 

  75. Möller, B., Oßmer, R., Howard, B.H., Gottschalk, G., and Hippe, H., Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov., Arch. Microbiol., 1984, vol. 139, pp. 388–396.

    Article  Google Scholar 

  76. Mountfort, D.O., Grant, WD, Clarke, R., and Asher, R., Eubacterium callanderi sp. nov. that demethoxylates O-methoxylated aromatic acids to volatile fatty acids, Int. J. Syst. Evol. Microbiol., 1988, vol. 38, pp. 254‒258.

    CAS  Google Scholar 

  77. Naidu, D. and Ragsdale S.W., Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica, J. Bacteriol., 2001, vol. 183, pp. 3276–3281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oshlag, J.Z., Ma, Y., Morse, K., Burger, B.T., Lemke, R.A., Karlen, S.D., Myers, K.S., Donohue, T.J., and Noguera, D.R., Anaerobic degradation of syringic acid by an adapted strain of Rhodopseudomonas palustris, Appl. Environ. Microbiol., 2020, vol. 86, p. e01888-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paarup, M., Friedrich, M.W., Tindall, B.J., and Finster, K., Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum, Antonie Van Leeuwenhoek. Int. J., 2006, vol. 89, pp. 55–69.

    Article  CAS  Google Scholar 

  80. Parekh, M., Keith, E.S., Daniel, S.L., and Drake, H.L., Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds, FEMS Microbiol. Lett., 1992, vol. 73, pp. 69–74.

    Article  CAS  PubMed  Google Scholar 

  81. Pierce, E., Xie, G., Barabote, R.D., Saunders, E., Han, C.S., Detter, J.C., Richardson, P., Brettin, T.S., Das, A., Ljungdahl, L.G., and Ragsdale, S.W., The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), Environ. Microbiol., 2008, vol. 10, pp. 2550–2573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ragsdale, S.W., Catalysis of methyl group transfers involving tetrahydrofolate and B12, Vitam. Horm., 2008, vol. 79, pp. 293–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reichenbecher, W. and Schink, B., Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone, Arch. Microbiol., 1997, vol. 168, pp. 338–344.

    Article  CAS  PubMed  Google Scholar 

  84. Ritter, D., Vinson, D., Barnhart, E., Akob, D.M., Fields, M.W., Cunningham, A.B., Orem, W., and McIntosh, J.C., Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges, Int. J. Coal. Geol., 2015, vol. 146, pp. 28–41.

    Article  CAS  Google Scholar 

  85. Rosazza, J.P., Huang, Z., Dostal, L., Volm, T., and Rousseau, B., Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product, J. Ind. Microbiol., 1995, vol. 15, pp. 457–471.

    Article  CAS  PubMed  Google Scholar 

  86. Sakamoto, S., Nobu, M.K., Mayumi, D., Tamazawa, S., Kusada, H., Yonebayashi, H., Iwama, H., Ikarashi, M., Wakayaääma, T., Maeda, H., Sakata, S., Tamura, T., Nomura, N., Kamagata, Y., and Tamaki, H., Koleobacter methoxysyntrophicus gen. nov., sp. nov., a novel anaerobic bacterium isolated from deep subsurface oil field and proposal of Koleobacteraceae fam. nov. and Koleobacterales ord. nov. within the class Clostridia of the phylum Firmicutes, Syst. Appl. Microbiol., 2021, vol. 44, p. 126154.

    Article  CAS  PubMed  Google Scholar 

  87. Sanford, R.A., Cole, J.R., Löffler, F.E., and Tiedje, J.M., Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate, Appl. Environ. Microbiol., 1996, vol. 62, pp. 3800–3808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schilhabel, A., Studenik, S., Vödisch, M., Kreher, S., Schlott, B., Pierik, A.J., and Diekert, G., The ether-cleaving methyltransferase system of the strict anaerobe Acetobacterium dehalogenans: analysis and expression of the encoding genes, J. Bacteriol., 2009, vol. 191, pp. 588–599.

    Article  CAS  PubMed  Google Scholar 

  89. Schink, B., Philipp, B., and Müller, J., Anaerobic degradation of phenolic compounds, Naturwissenschaften, 2000, vol. 87, pp. 12–23.

    Article  CAS  PubMed  Google Scholar 

  90. Schmid, G., Auerbach, H., Pierik, A.J., Schünemann, V., and Boll, M., ATP-dependent electron activation module of benzoyl-coenzyme A reductase from the hyperthermophilic archaeon Ferroglobus placidus, Biochemistry, 2016, vol. 55, pp. 5578–5586.

    Article  CAS  PubMed  Google Scholar 

  91. Siebert, A., Schubert, T., Engelmann, T., Studenik, S., and Diekert, G., Veratrol-O-demethylase of Acetobacterium dehalogenans: ATP-dependent reduction of the corrinoid protein, Arch. Microbiol., 2005, vol. 183, pp. 378–384.

    Article  CAS  PubMed  Google Scholar 

  92. Sjuts, H., Dunstan, M.S., Fisher, K., and Leys, D., Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2, Acta Crystallogr. D. Biol. Crystallogr., 2013, vol. 69, pp. 1609–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sjuts, H., Dunstan, M.S., Fisher, K., and Leys, D., Structures of the methyltransferase component of Desulfitobacterium hafniense DCB-2 O-demethylase shed light on methyltetrahydrofolate formation, Acta Crystallogr. D. Biol. Crystallogr., 2015, vol. 71, pp. 1900–1908.

    Article  CAS  PubMed  Google Scholar 

  94. Stackebrandt, E., Sproer, C., Rainey, F.A., Burghardt, J., Päuker, O., and Hippe, H., Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov., Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  95. Studenik, S., Kreher, S., and Diekert, G., The ether-cleaving methyltransferase of the strict anaerobe Acetobacterium dehalogenans: analysis of the zinc-binding site, FEMS Microbiol Lett., 2011, vol. 318, pp. 131–136.

    Article  CAS  PubMed  Google Scholar 

  96. Studenik, S., Vogel, M., and Diekert, G., Characterization of an O-demethylase of Desulfitobacterium hafniense DCB‑2, J. Bacteriol., 2012, vol. 194, pp. 3317–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stupperich, E. and Konle, R., Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata, Appl. Environ. Microbiol., 1993, vol. 59, pp. 3110–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stupperich, E., Konle, R., and Eckerskorn, C., Anaerobic O-demethylations of methoxynaphthols, methoxyfuran, and fluoroanisols by Sporomusa ovata, Biochem. Biophys. Res. Commun., 1996, vol. 223, pp. 770–777.

    Article  CAS  PubMed  Google Scholar 

  99. Subramanian, M., Tuckey, J., Patel, B., and Jensen, P.J., Engineering dicamba selectivity in crops: a search for appropriate degradative enzyme(s), J. Ind. Microbiol. Biotech., 1997, vol. 19, pp. 344–349.

    Article  CAS  Google Scholar 

  100. Tanaka, K. and Pfennig, N., Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus, Arch. Microbiol., 1988, vol. 149, pp. 181–187.

    Article  CAS  Google Scholar 

  101. Taylor, B.F., Aerobic and anaerobic catabolism of vanillic acid and some other methoxy-aromatic compounds by Pseudomonas sp. strain PN-1, Appl. Environ. Microbiol., 1983, vol. 46, pp. 1286–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tasaki, M., Kamagata, Y., Nakamura, K., and Mikami, E., Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate, Arch. Microbiol., 1992, vol. 157, pp. 209–212.

    Article  CAS  PubMed  Google Scholar 

  103. Traunecker, J., Preuß, A., and Diekert, G., Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium, Arch. Microbiol., 1991, vol. 156, p. 4162421.

    Article  Google Scholar 

  104. Utkin, I., Woese, C., and Wiegel, J., Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds, Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 612–619.

    Article  CAS  PubMed  Google Scholar 

  105. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W., Lignin biosynthesis and structure, Plant Physiol., 2010, vol. 153, pp. 895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Venkatesagowda, B. and Dekker, R.F.H., Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups, Enzyme Microb. Technol., 2021, vol. 147, p. 109780.

    Article  CAS  PubMed  Google Scholar 

  107. Wang, S., Chen, Y., Cao, Q., and Lou, H., Long-lasting gene conversion shapes the convergent evolution of the critical methanogenesis genes, G3, 2015, vol. 5, pp. 2475–2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Welte, C.U., A microbial route from coal to gas, Science, 2016, vol. 354, p. 184.

    Article  CAS  PubMed  Google Scholar 

  109. Welte, C.U., de Graaf, R., Dalcin Martins, P., Jansen, R.S., Jetten, M.S.M., and Kurth, J.M., A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon Archaeoglobus fulgidus, Environ. Microbiol, 2021, vol. 23, pp. 4017–4033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wischgoll, S., Heintz, D., Peters, F., Erxleben, A., Sarnighausen, E., Reski, R., Van Dorsselaer, A., and Boll, M., Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens, Mol. Microbiol., 2005, vol. 58, pp. 1238–1252.

    Article  CAS  PubMed  Google Scholar 

  111. Wright, G.E. and Madigan, M.T., Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii, Appl. Environ. Microbiol., 1991, vol. 57, pp. 2069–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yin, X., Cai, M., Liu, Y., Zhou, G., Aromokeye, D.A., Kulkarni, A.C., Nimzyk, R., Cullhed, H., Zhou, Z., Pan, J., Yang, Y., Gu, J.D., Elvert, M., Li, M., and Friedrich, M.W., Subgroup level differences of physiological activities in marine Lokiarchaeota, ISME J., 2020, vol. 15, pp. 848–861.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yu, T., Wu, W., Liang, W., Alexander, M., and Hinrichs, K.U., Growth of sedimentary Bathyarchaeota on lignin as an energy source, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. 6022–6027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zakzeski, J., The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev., 2010, vol. 110, pp. 3552–3599.

    Article  CAS  PubMed  Google Scholar 

  115. Zeikus, J.G., Lignin metabolism and the carbon cycle, in Advances in Microbial Ecology, Alexander, M., Ed., Boston: Springer, 1981, pp. 211–243.

    Google Scholar 

  116. Zeikus, J.G., Lynd, L.H., Thompson, T.E., Krzycki, J.A., Weimer, P.J., and Hegge, P.W., Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the marburg strain, Curr. Microbiol., 1980, vol. 3, pp. 381–386.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 22-24-00868.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khomyakova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The original online version of this article was revised: The Figure 2 has been updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomyakova, M.A., Slobodkin, A.I. Transformation of Methoxylated Aromatic Compounds by Anaerobic Microorganisms. Microbiology 92, 97–118 (2023). https://doi.org/10.1134/S0026261722603128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722603128

Keywords:

Navigation