Skip to main content

Catabolic Pathways and Enzymes Involved in the Anaerobic Degradation of Monocyclic Aromatic Compounds

  • Living reference work entry
  • First Online:
Anaerobic Utilization of Hydrocarbons, Oils, and Lipids

Abstract

Monocyclic aromatic compounds (MAC) comprise the second most abundant class of natural compounds, many of which are hazardous for the environment and human health. MAC can readily be degraded by many aerobic microorganisms by the extensive using of oxygenases for aromatic ring hydroxylation and cleavage. However, under anoxic conditions, this strategy is not an option and MAC degrading anaerobic prokaryotes employ a totally different enzyme inventory for attacking the resonance-stabilized aromatic ring system or the C–H bond of alky chains from aromatic hydrocarbons. The anaerobic degradation of MAC has become a treasure trove for the discovery of unprecedented enzymatic principles; many involve metalloenzymes catalyzing radical-based reactions. Characteristic enzymatic reactions involved in anaerobic MAC degradation comprise: (i) the addition of alkylated aromatics to fumarate by glycyl-radical enzymes, (ii) the water-dependent hydroxylation or transhydroxylation of MAC by Mo- or flavin-dependent enzymes, (iii) the carboxylation/decarboxylation of aromatic rings by UbiD-/UbiX-like enzyme systems, and (iv) the dearomatization of aromatics rings by ATP-dependent FeS-enzymes or ATP-independent W-enzymes. The multitude of MAC is converted via peripheral channeling pathways to only a few central intermediates that serve as substrates for dearomatizing ring reductases. Depending on the nature of these central intermediates, we divide the anaerobic MAC degradation pathways into five subgroups and highlight the individual characteristic enzymatic steps involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu Laban N, Selesi D, Jobelius C, Meckenstock RU (2009) Anaerobic benzene degradation by gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol 68:300–311

    Article  PubMed  CAS  Google Scholar 

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    CAS  PubMed  Google Scholar 

  • Ahn Y, Chae J, Zylstra GJ, Häggblom MM (2009) Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini. Appl Environ Microbiol 75:4248–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aklujkar M, Risso C, Smith J, Beaulieu D, Dubay R, Giloteaux L, DiBurro K, Holmes D (2014) Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus. Microbiology 160:2694–2709

    Article  CAS  PubMed  Google Scholar 

  • Ball HA, Johnson HA, Reinhard M, Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol 178:5755–5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40

    Article  CAS  PubMed  Google Scholar 

  • Biegert T, Altenschmidt U, Eckerskorn C, Fuchs G (1993) Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoate-CoA ligase from a denitrifying Pseudomonas species. Eur J Biochem 213:555–561

    Article  CAS  PubMed  Google Scholar 

  • Bisaillon JG, Lépine F, Beaudet R, Sylvestre M (1991) Carboxylation of o-cresol by an anaerobic consortium under methanogenic conditions. Appl Environ Microbiol 57:2131–2134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boll M, Fuchs G (1995) Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234:921–933

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Fuchs G (1998) Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 251:946–954

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Albracht SS, Fuchs G (1997) Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinetriphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur J Biochem 244:840–851

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Fuchs G, Meier C, Trautwein A, El Kasmi A, Ragsdale SW, Buchanan G, Lowe DJ (2001) Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes. J Biol Chem 276:47853–47862

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Löffler C, Morris BE, Kung JW (2014) Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 16:612–627

    Article  CAS  PubMed  Google Scholar 

  • Bonting CF, Fuchs G (1996) Anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) by a denitrifying bacterium. Arch Microbiol 165:402–408

    Article  CAS  PubMed  Google Scholar 

  • Brackmann R, Fuchs G (1993) Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. Eur J Biochem 213:563–571

    Article  CAS  PubMed  Google Scholar 

  • Bräsen C, Schönheit P (2004) Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Arch Microbiol 182:277–287

    Article  PubMed  CAS  Google Scholar 

  • Breese K, Fuchs G (1998) 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica–prosthetic groups, electron donor, and genes of a member of the molybdenum-flavin-iron-sulfur proteins. Eur J Biochem 251:916–923

    Article  CAS  PubMed  Google Scholar 

  • Breinig S, Schiltz E, Fuchs G (2000) Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J Bacteriol 182:5849–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune A, Schnell S, Schink B (1992) Sequential transhydroxylations converting hydroxyhydroquinone to phloroglucinol in the strictly anaerobic, fermentative bacterium Pelobacter massiliensis. Appl Environ Microbiol 58:1861–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  CAS  PubMed  Google Scholar 

  • Buckel W, Zhang J, Friedrich P, Parthasarathy A, Li H, Djurdjevic I, Dobbek H, Martins BM (2012) Enzyme catalyzed radical dehydrations of hydroxy acids. Biochim Biophys Acta 1824:1278–1290

    Article  CAS  PubMed  Google Scholar 

  • Buckel W, Kung JW, Boll M (2014) The benzoyl-coenzyme a reductase and 2-hydroxyacyl-coenzyme a dehydratase radical enzyme family. Chembiochem 15:2188–2194

    Article  CAS  PubMed  Google Scholar 

  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunane LM, Chen ZW, Shamala N, Mathews FS, Cronin CN, McIntire WS (2000) Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J Mol Biol 295:357–374

    Article  CAS  PubMed  Google Scholar 

  • Darley PI, Hellstern JA, Medina-Bellver JI, Marqués S, Schink B, Philipp B (2007) Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius. J Bacteriol 189:3824–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnar-Daumler C, Seubert A, Schmitt G, Heider J (2014) Simultaneous involvement of a tungsten-containing aldehyde: ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. J Bacteriol 196:483–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dermer J, Fuchs G (2012) Molybdoenzyme that catalyzes the anaerobic hydroxylation of a tertiary carbon atom in the side chain of cholesterol. J Biol Chem 287:36905–36916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz E, Jiménez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24:431–442

    Article  PubMed  CAS  Google Scholar 

  • Dickert S, Pierik AJ, Buckel W (2002) Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Mol Microbiol 44:49–60

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Schmeling S, Fuchs G (2008) Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica–a result of promiscuous enzymes and regulators? J Bacteriol 190:1620–1630

    Article  CAS  PubMed  Google Scholar 

  • Ebenau-Jehle C, Thomas M, Scharf G, Kockelkorn D, Knapp B, Schühle K, Heider J, Fuchs G (2012) Anaerobic metabolism of indoleacetate. J Bacteriol 194:2894–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebenau-Jehle C, Mergelsberg M, Fischer S, Brüls T, Jehmlich N, von Bergen M, Boll M (2016) An unusual strategy for the anoxic biodegradation of phthalate. ISME J 11:224. https://doi.org/10.1038/ismej.2016.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egland PG, Pelletier DA, Dispensa M, Gibson J, Harwood CS (1997) A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc Natl Acad Sci USA 94:6484–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egland PG, Gibson J, Harwood CS (2001) Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 67:1396–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshahed MS, Gieg LM, Mcinerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35:682–689

    Article  CAS  PubMed  Google Scholar 

  • Engelmann T, Kaufmann F, Diekert G (2001) Isolation and characterization of a veratrol: corrinoid protein methyl transferase from Acetobacterium dehalogenans. Arch Microbiol 175:376–383

    Article  CAS  PubMed  Google Scholar 

  • Evans PJ, Ling W, Goldschmidt B, Ritter ER, Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl Environ Microbiol 58:496–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Funk MA, Marsh E, Neil G, Drennan CL (2015) Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation. J Biol Chem 290:22398–22408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallus C, Schink B (1998) Anaerobic degradation of alpha-resorcylate by Thauera aromatica strain AR-1 proceeds via oxidation and decarboxylation to hydroxyhydroquinone. Arch Microbiol 169:333–338

    Article  CAS  PubMed  Google Scholar 

  • Gorny N, Schink B (1994a) Complete anaerobic oxidation of hydroquinone by Desulfococcus sp. strain Hy5: indications of hydroquinone carboxylation to gentisate. Arch Microbiol 162:131–135

    Article  CAS  Google Scholar 

  • Gorny N, Schink B (1994b) Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl Environ Microbiol 60:3396–3400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorny N, Schink B (1994c) Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium. Arch Microbiol 161:25–32

    Article  CAS  Google Scholar 

  • Haddock JD, Ferry JG (1989) Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41. J Biol Chem 264:4423–4427

    CAS  PubMed  Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  PubMed  Google Scholar 

  • Heider J (2001) A new family of CoA-transferases. FEBS Lett 509:345–349

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Fuchs G (1997a) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Fuchs G (1997b) Microbial anaerobic aromatic metabolism. Anaerobe 3:1–22

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Schühle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E, Delong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Heidelberg, pp 601–630

    Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  CAS  Google Scholar 

  • Heider J, Schühle K, Frey J, Schink B (2016a) Activation of acetone and other simple ketones in anaerobic bacteria. J Mol Microbiol Biotechnol 26:152–164

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT (2016b) Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes. J Mol Microbiol Biotechnol 26:29–44

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Szaleniec M, Sünwoldt K, Boll M (2016c) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62

    Article  CAS  PubMed  Google Scholar 

  • Hirsch W, Schägger H, Fuchs G (1998) Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii. Eur J Biochem 251:907–915

    Article  CAS  PubMed  Google Scholar 

  • Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 77:5926–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopper DJ, Taylor DG (1977) The purification and properties of p-cresol-(acceptor) oxidoreductase (hydroxylating), a flavocytochrome from Pseudomonas putida. Biochem J 167:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopper DJ, Bossert ID, Rhodes-Roberts ME (1991) p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol. J Bacteriol 173:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc B Biol Sci 368:20120322

    Article  CAS  Google Scholar 

  • Jobst B, Schühle K, Linne U, Heider J (2010) ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J Bacteriol 192:1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes J, Bluschke A, Jehmlich N, von Bergen M, Boll M (2008) Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens. J Bacteriol 190:6493–6500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juárez JF, Zamarro MT, Eberlein C, Boll M, Carmona M, Díaz E (2013) Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ Microbiol 15:148–166

    Article  PubMed  CAS  Google Scholar 

  • Junghare M, Spiteller D, Schink B (2016) Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01. Environ Microbiol 18:3175. https://doi.org/10.1111/1462-2920.13447

    Article  CAS  PubMed  Google Scholar 

  • Kaster A, Moll J, Parey K, Thauer RK (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA 108:2981–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazumi J, Häggblom MM, Young LY (1995) Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors. Appl Microbiol Biotechnol 43:929–936

    Article  CAS  PubMed  Google Scholar 

  • Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Kluge C, Tschech A, Fuchs G (1990) Anaerobic metabolism of resorcylic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium. Arch Microbiol 155:68–74

    Article  CAS  Google Scholar 

  • Kniemeyer O, Heider J (2001a) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386

    Article  CAS  PubMed  Google Scholar 

  • Kniemeyer O, Heider J (2001b) (S)-1-phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Arch Microbiol 176:129–135

    Article  CAS  PubMed  Google Scholar 

  • Koch J, Eisenreich W, Bacher A, Fuchs G (1993) Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 211:649–661

    Article  CAS  PubMed  Google Scholar 

  • Krieger CJ, Beller HR, Reinhard M, Spormann AM (1999) Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J Bacteriol 181:6403–6410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10:1703–1712

    Article  CAS  PubMed  Google Scholar 

  • Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, van Dorsselaer A, Friedrich T, Boll M (2009) Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 106:17687–17692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn P, Hagen WR, Boll M (2010) Reversible biological Birch reduction at an extremely low redox potential. J Am Chem Soc 132:9850–9856

    Article  CAS  PubMed  Google Scholar 

  • Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow H, Boll M (2008) 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Kuntze K, Vogt C, Richnow H, Boll M (2011a) Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 77:5056–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntze K, Kiefer P, Baumann S, Seifert J, von Bergen M, Vorholt JA, Boll M (2011b) Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 82:758–769

    Article  CAS  PubMed  Google Scholar 

  • Lack A, Fuchs G (1994) Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp. Arch Microbiol 161:132–139

    CAS  PubMed  Google Scholar 

  • Laempe D, Eisenreich W, Bacher A, Fuchs G (1998) Cyclohexa-1,5-diene-1-carbonyl-CoA hydratase [corrected], an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur J Biochem 255:618–627

    Article  CAS  PubMed  Google Scholar 

  • Laempe D, Jahn M, Fuchs G (1999) 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. Eur J Biochem 263:420–429

    Article  CAS  PubMed  Google Scholar 

  • Laempe D, Jahn M, Breese K, Schägger H, Fuchs G (2001) Anaerobic metabolism of 3-hydroxybenzoate by the denitrifying bacterium Thauera aromatica. J Bacteriol 183:968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R (2012) Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 14:1118–1132

    Article  CAS  PubMed  Google Scholar 

  • Leuthner B, Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of β-oxidation of the intermediate benzylsuccinate. J Bacteriol 182:272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628

    Article  CAS  PubMed  Google Scholar 

  • Lochmeyer C, Koch J, Fuchs G (1992) Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium. J Bacteriol 174:3621–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M (2011) Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 13:696–709

    Article  PubMed  CAS  Google Scholar 

  • Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80:4095–4107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mai X, Adams MW (1994) Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. J Biol Chem 269:16726–16732

    CAS  PubMed  Google Scholar 

  • Mai X, Adams MW (1996) Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:5897–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntire W, Hopper DJ, Singer TP (1985) p-cresol methylhydroxylase. Assay and general properties. Biochem J 228:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A, Niessen H, Abt D, Einsle O, Schink B, Kroneck PM (2004) Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. Proc Natl Acad Sci USA 101:11571–11576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möbitz H, Boll M (2002) A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 41:1752–1758

    Article  PubMed  CAS  Google Scholar 

  • Morasch B, Meckenstock RU (2005) Anaerobic degradation of p-xylene by a sulfate-reducing enrichment culture. Curr Microbiol 51:127–130

    Article  CAS  PubMed  Google Scholar 

  • Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417

    Article  CAS  PubMed  Google Scholar 

  • Muhr E, Schühle K, Clermont L, Sünwoldt K, Kleinsorge D, Seyhan D, Kahnt J, Schall I, Cordero PR, Schmitt G, Heider J (2015) Enzymes of anaerobic ethylbenzene and p-ethylphenol catabolism in ‘Aromatoleum aromaticum’: differentiation and differential induction. Arch Microbiol 197:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Muhr E, Leicht O, González Sierra S, Thanbichler M, Heider J (2016) A fluorescent bioreporter for acetophenone and 1-phenylethanol derived from a specifically induced catabolic operon. Front Microbiol 6:1561

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller JA, Schink B (2000) Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum. Arch Microbiol 173:288–295

    Article  PubMed  Google Scholar 

  • Müller JA, Galushko AS, Kappler A, Schink B (1999) Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch Microbiol 172:287–294

    Article  PubMed  Google Scholar 

  • Müller JA, Galushko AS, Kappler A, Schink B (2001) Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J Bacteriol 183:752–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Narmandakh A, Gad’on N, Drepper F, Knapp B, Haehnel W, Fuchs G (2006) Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. J Bacteriol 188:7815–7822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobu MK, Narihiro T, Hideyuki T, Qiu Y, Sekiguchi Y, Woyke T, Goodwin L, Davenport KW, Kamagata Y, Liu W (2015) The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol 17:4861–4872

    Article  CAS  PubMed  Google Scholar 

  • Paizs C, Bartlewski-Hof U, Rétey J (2007) Investigation of the mechanism of action of pyrogallol-phloroglucinol transhydroxylase by using putative intermediates. Chemistry 13:2805–2811

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy A, Kahnt J, Chowdhury NP, Buckel W (2013) Phenylalanine catabolism in Archaeoglobus fulgidus VC-16. Arch Microbiol 195:781–797

    Article  CAS  PubMed  Google Scholar 

  • Payne KA, White MD, Fisher K, Khara B, Bailey SS, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Beveridge R, Barran P, Rigby SE, Scrutton NS, Hay S, Leys D (2015) New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters F, Shinoda Y, McInerney MJ, Boll M (2007) Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 189:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Philipp B, Schink B (1998) Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius. J Bacteriol 180:3644–3649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philipp B, Schink B (2012) Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environ Microbiol Rep 4:469–478

    Article  CAS  PubMed  Google Scholar 

  • Porter AW, Young LY (2013) The bamA gene for anaerobic ring fission is widely distributed in the environment. Front Microbiol 4:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Sekiguchi Y, Imachi H, Kamagata Y, Tseng I, Cheng S, Ohashi A, Harada H (2004) Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70:1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Sekiguchi Y, Hanada S, Imachi H, Tseng I, Cheng S, Ohashi A, Harada H, Kamagata Y (2006) Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch Microbiol 185:172–182

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74:2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabus R, Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch Microbiol 170:377–384

    Article  CAS  Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Boll M, Golding B, Wilkes H (2016a) Anaerobic degradation of p-alkylated benzoates and toluenes. J Mol Microbiol Biotechnol 26:63–75

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PM, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016b) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28

    Article  CAS  PubMed  Google Scholar 

  • Reichenbecher W, Brune A, Schink B (1994) Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol. Biochim Biophys Acta 1204:217–224

    Article  CAS  PubMed  Google Scholar 

  • Reichenbecher W, Philipp B, Suter MJ, Schink B (2000) Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus. Arch Microbiol 173:206–212

    Article  CAS  PubMed  Google Scholar 

  • Rhee SK, Fuchs G (1999) Phenylacetyl-CoA: acceptor oxidoreductase, a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. Eur J Biochem 262:507–515

    Article  CAS  PubMed  Google Scholar 

  • Rotaru A, Probian C, Wilkes H, Harder J (2010) Highly enriched betaproteobacteria growing anaerobically with p-xylene and nitrate. FEMS Microbiol Ecol 71:460–468

    Article  CAS  PubMed  Google Scholar 

  • Rudolphi A, Tschech A, Fuchs G (1991) Anaerobic degradation of cresols by denitrifying bacteria. Arch Microbiol 155:238–248

    Article  CAS  PubMed  Google Scholar 

  • Schennen U, Braun K, Knackmuss HJ (1985) Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J Bacteriol 161:321–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic non-sporeforming bacterium. Arch Microbiol 133:195–201

    Article  CAS  Google Scholar 

  • Schink B, Stams AJ (2013) Syntrophism among prokaryotes. In: Rosenberg E, Delong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Vol 2, Ecophysiology and biochemistry. Springer, Berlin, pp 471–493

    Google Scholar 

  • Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23

    Article  CAS  PubMed  Google Scholar 

  • Schleinitz KM, Schmeling S, Jehmlich N, von Bergen M, Harms H, Kleinsteuber S, Vogt C, Fuchs G (2009) Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15. Appl Environ Microbiol 75:3912–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeling S, Fuchs G (2009) Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Arch Microbiol 191:869–878

    Article  CAS  PubMed  Google Scholar 

  • Schmeling S, Narmandakh A, Schmitt O, Gad'on N, Schühle K, Fuchs G (2004) Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:8044–8057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid G, René SB, Boll M (2015) Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus. Environ Microbiol 17:3289–3300

    Article  CAS  PubMed  Google Scholar 

  • Schühle K, Fuchs G (2004) Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:4556–4567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schühle K, Nies J, Heider J (2016) An indolacetate-CoA ligase and a phenylsuccinyl-CoA transferase involved in anaerobic metabolism of auxin. Environ Microbiol 18:3120. https://doi.org/10.1111/1462-2920.13347

    Article  CAS  PubMed  Google Scholar 

  • Selmer T, Andrei PI (2001) p-hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 268:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Selmer T, Pierik AJ, Heider J (2005) New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol Chem 386:981–988

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj B, Buckel W, Golding BT, Ullmann GM, Martins BM (2016) Structure and function of 4-Hydroxyphenylacetate decarboxylase and its cognate activating enzyme. J Mol Microbiol Biotechnol 26:76–91

    Article  CAS  PubMed  Google Scholar 

  • Song B, Palleroni NJ, Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM (2001) Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Ornston LN (1973) The beta-ketoadipate pathway. Adv Microb Physiol 9:89–151

    Article  CAS  PubMed  Google Scholar 

  • Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R (2014) Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 80:7592–7603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szaleniec M, Heider J (2016) Modeling of the reaction mechanism of enzymatic radical C-C coupling by benzylsuccinate synthase. Int J Mol Sci 17:514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szaleniec M, Borowski T, Schühle K, Witko M, Heider J (2010) Ab initio modeling of ethylbenzene dehydrogenase reaction mechanism. J Am Chem Soc 132:6014–6024

    Article  CAS  PubMed  Google Scholar 

  • Szaleniec M, Dudzik A, Kozik B, Borowski T, Heider J, Witko M (2014) Mechanistic basis for the enantioselectivity of the anaerobic hydroxylation of alkylaromatic compounds by ethylbenzene dehydrogenase. J Inorg Biochem 139:9–20

    Article  CAS  PubMed  Google Scholar 

  • Thiele B, Rieder O, Golding BT, Müller M, Boll M (2008) Mechanism of enzymatic Birch reduction: stereochemical course and exchange reactions of benzoyl-CoA reductase. J Am Chem Soc 130:14050–14051

    Article  CAS  PubMed  Google Scholar 

  • Tiedt O, Mergelsberg M, Boll K, Müller M, Adrian L, Jehmlich N, von Bergen M, Boll M (2016) ATP-dependent C-F bond cleavage allows the complete degradation of 4-fluoroaromatics without oxygen. MBio 7:e00990–e00916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tor JM, Lovley DR (2001) Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 3:281–287

    Article  CAS  PubMed  Google Scholar 

  • Trautwein K, Wilkes H, Rabus R (2012) Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in “Aromatoleum aromaticum” EbN1. Proteomics 12:1402–1413

    Article  CAS  PubMed  Google Scholar 

  • Tschech A, Schink B (1985) Fermentative degradation of resorcinol and resorcylic acids. Arch Microbiol 143:52–59

    Article  CAS  Google Scholar 

  • Unciuleac M, Warkentin E, Page CC, Boll M, Ermler U (2004) Structure of a xanthine oxidase-related 4-hydroxybenzoyl-CoA reductase with an additional [4Fe-4S] cluster and an inverted electron flow. Structure 12:2249–2256

    Article  CAS  PubMed  Google Scholar 

  • Verfürth K, Pierik AJ, Leutwein C, Zorn S, Heider J (2004) Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m-xylene metabolism. Arch Microbiol 181:155–162

    Article  PubMed  CAS  Google Scholar 

  • Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stärk H, Biskup T, Weber S, Cotelesage JJ, George GN, Ermler U, Boll M (2015) Structural basis of enzymatic benzene ring reduction. Nat Chem Biol 11:586–591

    Article  CAS  PubMed  Google Scholar 

  • White MD, Payne KA, Fisher K, Marshall SA, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Rigby SE, Scrutton NS, Hay S, Leys D (2015) UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151

    Article  CAS  PubMed  Google Scholar 

  • Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, van Dorsselaer A, Boll M (2005) Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58:1238–1252

    Article  CAS  PubMed  Google Scholar 

  • Wöhlbrand L, Wilkes H, Halder T, Rabus R (2008) Anaerobic degradation of p-ethylphenol by “Aromatoleum aromaticum” strain EbN1: pathway, regulation, and involved proteins. J Bacteriol 190:5699–5709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R (2013) Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 15:1334–1355

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Blaser M, Andrei PI, Pierik AJ, Selmer T (2006) 4-Hydroxyphenylacetate decarboxylases: properties of a novel subclass of glycyl radical enzyme systems. Biochemistry 45:9584–9592

    Article  CAS  PubMed  Google Scholar 

  • Zargar K, Saville R, Phelan RM, Tringe SG, Petzold CJ, Keasling JD, Beller HR (2016) In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci Rep 6:31362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Tremblay P, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2013) Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 79:7800–7806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Tremblay P, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2014) Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol 5:245

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Boll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boll, M., Estelmann, S., Heider, J. (2018). Catabolic Pathways and Enzymes Involved in the Anaerobic Degradation of Monocyclic Aromatic Compounds. In: Boll, M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-33598-8_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33598-8_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33598-8

  • Online ISBN: 978-3-319-33598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics