Skip to main content
Log in

Bimetallic Heterogeneous Catalysts for the Oxidation of Sulfur-Containing Compounds with Hydrogen Peroxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Bimetallic heterogeneous catalysts based on SBA-15 containing molybdenum and iron oxides were studied in the oxidation reactions of model mixtures of organosulfur compounds. The addition of iron (in the form of iron(III) oxide) in an amount of 0.05 wt % to the catalyst 5% Mo/SBA-15 was the most effective. The catalysts were characterized by a complex of physicochemical methods: low-temperature adsorption–desorption of nitrogen, X-ray diffraction analysis, transmission electron microscopy, and X-ray photoelectron spectroscopy. The influence of the main oxidation parameters (reaction time, temperature, composition and amount of catalyst, and amount of oxidizing agent) on the conversion of dibenzothiophene as a component of the model mixture was investigated. Optimal oxidation conditions were selected to achieve the total conversion of the substrate: the molar ratio H2O2 : S = 2 : 1, 0.5 wt % FeMo/SBA-15 catalyst, 60 min, and 60°C. Catalysts can be used for at least five cycles without loss of activity during their intermediate washing from oxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhang, M., Liu, J., Li, H., Wei, Y., Fu, Y., Liao, W., Zhu, L., Chen, G., Zhu, W., and Li, H., Appl. Catal. B: Environ., 2020, vol. 271, p. 118936.

    Article  CAS  Google Scholar 

  2. Lim, X. and Ong, W., Nanoscale Horizons, 2021, vol. 6, no. 8, p. 588.

    Article  CAS  PubMed  Google Scholar 

  3. Song, Y., Fang, W., Liu, C., Sun, Z., Li, F., and Xu, L., J. Phys. Chem. Solids, 2020, vol. 141, p. 109395.

    Article  CAS  Google Scholar 

  4. Albayrak, A. and Tavman, A., Ultrason. Sonochem., 2022, vol. 83, p. 105845.

    Article  Google Scholar 

  5. Shafiq, I., Shafique, S., Akhter, P., Abbas, G., Qurashi, A., and Hussain, M., Catal. Rev. Sci. Eng., 2021, p. 1.

  6. Ahmadian, M. and Anbia, M., Fuel, 2022, vol. 324, p. 124471.

    Article  CAS  Google Scholar 

  7. Li, A., Song, H., Meng, H., Lu, Y., and Li, C., Fuel, 2022, vol. 310, p. 122430.

    Article  CAS  Google Scholar 

  8. Abdullah, W., Ali, R., and Bakar, W., J. Taiwan Inst. Chem. Eng., 2016, vol. 58, p. 344.

    Article  CAS  Google Scholar 

  9. Alibolandi, M., Darian, J., Ghaedian, M., Royaee, S., and Shafeghat, A., Korean J. Chem. Eng, 2020, vol. 37, no. 11, p. 1867.

    Article  CAS  Google Scholar 

  10. Choi, A., Roces, S., Dugos, N., Futalan, C., Lin, S., and Wan, M., J. Taiwan Inst. Chem. Eng, 2014, vol. 45, no. 6, p. 2935.

    Article  CAS  Google Scholar 

  11. Campos-Martin, J., Capel-Sanchez, M., Perez-Presas, P., and Fierro, J., J. Chem. Technol. Biotechnol., 2010, vol. 85, no. 7, p. 879.

    Article  CAS  Google Scholar 

  12. More, N. and Gogate, P.R., Ultrason. Sonochem., 2019, vol. 51, p. 58.

    Article  CAS  PubMed  Google Scholar 

  13. Dizaji, A., Mokhtarani, B., and Mortaheb, H., Fuel, 2019, vol. 236, p. 717.

    Article  CAS  Google Scholar 

  14. Akhmadullin, R.M., Bui, D.N., Akhmadullina, A.G., and Samuilov, Ya.D., Kinet. Katal., 2013, vol. 54, no. 3.

  15. Haghighi, M. and Gooneh-Farahani, S., Environ. Sci. Pollut. Res., 2020, vol. 27, no. 32, p. 39923.

    Article  CAS  Google Scholar 

  16. Kim, T., Kim, M., Kleitz, F., Nair, M., Guillet, R., Jeong, K., Chae, H., Kim, C., and Jeong, S., ChemCatChem, 2012, vol. 4, no. 5, p. 687.

    Article  CAS  Google Scholar 

  17. Du, Q., Guo, Y., Wu, P., Liu, H., and Chen, Y., Micropor. Mesopor. Mater, 2019, vol. 275, p. 61.

    Article  CAS  Google Scholar 

  18. Kulikov, L.A., Akopyan, A.V., Polikarpova, P.D., Zolotukhina, A.V., Maximov, A.L., Anisimov, A.V., and Karakhanov, E.A., Ind. Eng. Chem. Res., 2019, vol. 58, no. 45, p. 20562.

    Article  CAS  Google Scholar 

  19. Abubackar, H.N., Bengelsdorf, F.R., Durre, P., Veiga, M.C., and Kennes, C., Appl. Energy, 2016, vol. 169, p. 210.

    Article  CAS  Google Scholar 

  20. Goldberg, M.A., Akopyan, A.V., Gafurov, M.R., Makshakova, O.N., Donskaya, N.O., Fomin, A.S., Polikarpova, P.P., Anisimov, A.V., Murzakhanov, F.F., Leonov, A.V., Konovalov, A.A., Kudryavtsev, E.A., Barinov, S.M., and Komlev, V.S., J. Phys. Chem., vol. 125, no. 21, p. 11604.

  21. Akopyan, A., Polikarpova, P., Gul, O., Anisimov, A., and Karakhanov, E., Energy Fuels, 2020, vol. 34, no. 11, p. 14611.

    Article  CAS  Google Scholar 

  22. Andrei, R.D., Cambruzzi, N., Bonne, M., Lebeau, B., and Hulea, V., J. Porous Mater., 2019, vol. 26, no. 2, p. 533.

    Article  CAS  Google Scholar 

  23. Ojeda-Lopez, R., Perez Hermosillo, I.J., Esparza-Schulz, J., Cervantes-Uribe, A., and Domínguez, A., Adsorption, 2015, vol. 21, p. 659.

    Article  CAS  Google Scholar 

  24. Farghadani, M. and Mahdavi, V., Fuel Process. Technol., 2022, vol. 236, p. 107415.

    Article  CAS  Google Scholar 

  25. Bryzhin, A.A., Rudnev, V.S., Lukiyanchuk, I.V., Vasil’eva, M.S., and Tarkhanova, I.G., Kinet. Katal., 2020, vol. 61, no. 2, p. 262.

    Google Scholar 

  26. Wang, J., Yang, B., Peng, X., Ding, Y., Yu, S., Zhang, F., Zhang, L., Wu, H., and Guo, J., Chem. Eng. J., 2022, vol. 429, p. 132446.

    Article  CAS  Google Scholar 

  27. Su, T., Chi, M., Chang, H., Jin, Y., Liao, W., Ren, W., Zhao, D., Len, C., and Lü, H., Colloids Surf. A. Physicochem. Eng. Asp., 2021, vol. 632, p. 127821.

    Article  Google Scholar 

  28. Rajendran, A., Cui, T., Fan, H., Yang, Z., Feng, J., and Li, W., J. Mater. Chem. A, 2020, vol. 8, no. 5, p. 2246.

    Article  CAS  Google Scholar 

  29. He, J., Zhou, S., Wu, P., Wu, Y., He, L., Zhu, L., Zhu, W., and Li, H., Fuel Process. Technol., 2022, vol. 236, p. 107399.

    Article  CAS  Google Scholar 

  30. Deng, C., Wu, P., Zhu, L., He, J., Tao, D., Lu, L., He, M., Hua, M., Li, H., and Zhu, W., Appl. Mater. Today, 2020, vol. 20, p. 100680.

    Article  Google Scholar 

  31. Ammar, S., Kareem, Y., and Ali, A., J. Environ. Chem. Eng, 2018, vol. 6, no. 6, p. 6780.

    Article  CAS  Google Scholar 

  32. Li, X., Zhang, L., and Sun, Y., Catalysts, 2020, vol. 10, no. 9, p. 1091.

    Article  CAS  Google Scholar 

  33. Zhang, M., Fu, Y., Wang, C., Wei, Y., Gao, Y., Yang, W., Fan, L., Zhu, W., and Li, H., Petrol. Sci., 2022, vol. 19, no. 1, p. 345.

    Article  CAS  Google Scholar 

  34. Beshkoofeh, S., Ghalami-Choobar, B., Shahidian, Z., and Khosharay, S., Iran. J. Chem. Chem. Eng., 2021, vol. 40, no. 6, p. 1777.

    CAS  Google Scholar 

  35. Nazmi, N.A.S.M., Razak, F.I.A., Mokhtar, W.N.A.W., Ibrahim, M.N.M., Adam, F., Yahaya, N., Rosid, S.J.M., Shukri, N.M., and Abdullah, W.N.W., Environ. Sci. Pollut. Res., 2022, vol. 315, p. 123239.

    Google Scholar 

  36. Wang, G., Zhang, J., and Liu, Y., Korean J. Chem. Eng., 2013, vol. 30, no. 5, p. 1.

    Article  Google Scholar 

  37. Bakar, W.A.W.A., Ali, R., Kadir, A.A.A., and Mokhtar, W.N.A.W., Fuel Process. Technol., 2012, vol. 101, p. 78.

    Article  CAS  Google Scholar 

  38. Akopyan, A., Polikarpova, P., Vutolkina, A., Cherednichenko, K., Stytsenko, V., and Glotov, A., Pure Appl. Chem., 2021, vol. 93, no. 2, p. 231.

    Article  CAS  Google Scholar 

  39. Sychev, A.Ya. and Isaak, V.G., Gomogennyi kataliz soedineniyami zheleza (Homogeneous Catalysis by Iron Compounds), Chisinau: Shtiintsa, 1988.

  40. Jiang, W., Zhu, W., Li, H., Chao, Y., Xun, S., Chan, Y., Li, H., and Zhao, Z., J. Mol. Catal. A. Chem., 2014, vol. 382, p. 8.

    Article  CAS  Google Scholar 

  41. Tireli, A., do Rosário Guimarães, I., de Castro, G.M.M., Gonçalves, M.A., de Castro Ramalho, T., and Guerreiro, M.C., Environ. Sci. Poll. Res., 2020, vol. 27, p. 14963.

    Article  CAS  Google Scholar 

  42. Karpov, S.I., Roessner, F., and Selemenev, V.F., J. Porous Mater., 2014, vol. 21, no. 4, p. 449.

    Article  CAS  Google Scholar 

  43. Eseva, E.A., Lukashov, M.O., Cherednichenko, K.A., Levin, I.S., and Akopyan, A.V., Ind. Eng. Chem. Res., 2021, vol. 60, no. 39, p. 14154.

    Article  CAS  Google Scholar 

  44. Wang, B., Li, X., Chen, P., and Zhu, B., J. Alloys Compd., 2019, vol. 786, p. 440.

    Article  CAS  Google Scholar 

  45. Qin, S., Zhang, C., Xu, J., Yang, Y., Xiang, H., and Li, Y., Appl. Catal. A: Gen., 2011, vol. 392, nos. 1–2, p. 118.

    Article  CAS  Google Scholar 

  46. Zhou, Q., Fu, S., Zou, M., He, Y., Wu, Y., and Wu, T., RSC Adv., 2015, vol. 5, no. 85, p. 69388.

    Article  CAS  Google Scholar 

  47. Wang, C., Miao, Q., Huang, X., Li, J., Duan, Y., Yan, L., Jiang, Y., and Lu, S., New J. Chem., 2020, vol. 44, no. 43, p. 18745.

    Article  CAS  Google Scholar 

  48. Li, H., Zhu, W., Wang, Y., Zhang, J., Lu, J., and Yan, Y., Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride, Green Chem., 2009, vol. 11, no. 6, p. 810.

    Article  CAS  Google Scholar 

  49. Khayyat, S. and Roselin, L.S., J. Saudi Chem. Soc., 2017, vol. 21, no. 3, p. 349.

    Article  CAS  Google Scholar 

  50. Cao, Y., Wang, H., Ding, R., Wang, L., Liu, Z., and Lv, B., Appl. Catal. A: Gen., 2020, vol. 589, p. 117308.

    Article  CAS  Google Scholar 

  51. Chamack, M., Mahjoub, A.R., and Aghayan, H., Chem. Eng. Res. Des., 2015, vol. 94, p. 565.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. O. Gul or P. D. Polikarpova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: MeSPh, methyl phenyl sulfide; DBT, dibenzothiophene; BT, benzothiophene; 4-MDBT, 4‑methyldibenzothiophene; 4,6-DMDBT, 4,6-dimethyldibenzothiophene; BET, Brunauer–Emmett–Teller method; BJH, Barrett–Joyner–Halenda model; ATR, attenuated total reflectance; TEM, transmission electron microscopy; XRD, X-ray diffraction analysis; XPS, X-ray photoelectron spectroscopy; Ssp, specific surface area; Vpore, total pore volume; Dpore, pore diameter; Asp, specific activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, O.O., Polikarpova, P.D., Akopyan, A.V. et al. Bimetallic Heterogeneous Catalysts for the Oxidation of Sulfur-Containing Compounds with Hydrogen Peroxide. Kinet Catal 64, 627–634 (2023). https://doi.org/10.1134/S0023158423050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050038

Keywords:

Navigation