Skip to main content
Log in

Studies on functionalized mesoporous materials—Part I: characterization of silylized mesoporous material of type MCM-41

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The synthesis of organic–inorganic composite materials was performed by the surface modification of mesoporous material type MCM-41 by chlorodimethylphenylsilane and dichloromethylphenylsilane. Applying IR spectroscopy, low temperature nitrogen adsorption/desorption (isotherms BET), thermogravimetric measurements and technique of competitive adsorption of toluene and water it was shown that the degree of silylation, hydrophobicity, surface and volume properties (pore size distribution, pore volume) strongly depends on the nature of silylation agent and the ratio of calculated amount of silanol groups to the modifier. Two types of condensation reaction take place: (1) the reaction of the modifier with surface silanol groups, and (2) an inter-molecular condensation of the modifier, resulting in additional pore blocking. Only 24–36 % of the surface silanol groups react with modifier agent. The materials are stable up to temperatures of about 170 °C that is higher than the corresponding polymeric resins. The TG/DTA data allowed concluding that the degree of grafting depends on the ratio silylation agent to SiOH groups. As shown by Fourier transform diffuse reflectance mode spectroscopy only free silanol groups react with modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Scheme 4
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. F. Selemenev, G. Y. Oros, O. I. Stukalov, M. P. Tsurupa, V. A. Davankov, Patent of Russian Federation No 93032352/13(031326) 21.06.1993

  2. V.A. Chirkin, S.I. Karpov, V.F. Selemenev, N.A. Belanova, Ind. Chem. 79, 23 (2013). (in Russian)

    CAS  Google Scholar 

  3. N.A. Udalova, S.I. Karpov, V.F. Selemenev, I.A. Sharmar, Rus. J. Phys. Chem. A. 83(6), 1006 (2009)

    Article  CAS  Google Scholar 

  4. F. Hellferich, J. Chem. Educ. 40(4), 231 (1963)

    Google Scholar 

  5. O.B. Rudakov, Solution as a Means of Process Control in Liquid Chromatography (Voronezh State University Press, Voronezh, 2003). 302 p

    Google Scholar 

  6. M. Marhol, Ion Exchangers in Analytical Chemistry: Properties and Application (Mir, Moscow, 1982), p. 248

    Google Scholar 

  7. H. Xiao, N. Cezar, J. Colloid Interface Sci. 267, 343 (2003)

    Article  CAS  Google Scholar 

  8. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990)

    Article  CAS  Google Scholar 

  9. S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc. Chem. Commun. 8, 680 (1993)

    Article  Google Scholar 

  10. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  11. W.D. Bossaert, D.E. de Vos, W.M. van Rhijn, J. Bullen, P.J. Grobert, P.A. Jacobs, J. Catal. 182, 156 (1999)

    Article  CAS  Google Scholar 

  12. T. Martin, A. Galarneau, F. Di Renzo, D. Brunel, F. Fajula, Chem. Mater. 16(9), 1725 (2004)

    Article  CAS  Google Scholar 

  13. T. Yasmin, K. Müller, J. Chromatogr. A. May 14 1217 (20) (2010): 3362–3374. E pub 2010. Mar 10

  14. M. Etiennne, A. Walcarius, Talanta 59, 1173 (2003)

    Article  Google Scholar 

  15. Q. Gao, W. Xu, Y. Xu, D. Wu, Y. Sun, F. Deng, W. Shen, J. Phys. Chem. B. 112, 2261 (2008)

    Article  CAS  Google Scholar 

  16. A.J. O’Connor, A. Hokura, J.M. Kisler, S. Shimazu, G.W. Stevens, Y. Komatsu, Sep. Purific. Tech. 48, 197 (2006)

    Article  Google Scholar 

  17. F. Hoffmann, M. Cornelius, J. Morell, M. Froeba, Angew. Chem. Int. Ed. 45, 3216 (2006)

    Article  CAS  Google Scholar 

  18. S. Chiarakorna, T. Areeroba, N. Grisdanurak, Sci. Tech. Adv. Mater. 8, 110 (2007)

    Article  Google Scholar 

  19. E.V. Borodina, S.I. Karpov, V.F. Selemenev, F. Roessner, Nanotech 5(11), 808 (2010). (in Russia)

    Google Scholar 

  20. E.P. Barrett, L.G. Joyner, P.P.J. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  CAS  Google Scholar 

  21. R. Glaeser, R. Roesky, T. Boger, G. Eigenberger, S. Ernst, J. Weitkamp, Stud. Surf. Sci. Catal. 105, 695 (1997)

    Article  Google Scholar 

  22. J. Weitkamp, S. Ernst, E. Roland, G.F. Thiele, Stud. Surf. Sci. Catal. 105, 763 (1997)

    Article  Google Scholar 

  23. S.I. Karpov, F. Roessner, V.F. Selemenev, M.V. Matveeva, Russ. J. Phys. Chem. A 84(1), 58 (2010)

    Article  CAS  Google Scholar 

  24. S. Ek, A. Root, M. Peussa, L. Niinistö, Thermochim. Acta 379, 201 (2001)

    Article  CAS  Google Scholar 

  25. S.A. Kozlova, V.A. Parfenov, L.S. Tarasova, S.D. Kirik, J. Sib. Fed. Univ. Chem. 1, 376 (2008)

    Google Scholar 

  26. D. Das, J.F. Lee, S. Cheng, Chem. Commun. 21, 2178 (2001)

    Article  Google Scholar 

  27. S. Brunauer, P. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  28. M. Thommes, R. Koehn, M. Froeba, J. Phys. Chem. 104, 7932 (2000)

    Article  CAS  Google Scholar 

  29. M. Thommes, R. Koehn, M. Froeba, Stud. Surf. Sci. Catal. 142, 1695 (2002)

    Article  Google Scholar 

  30. M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie (Thieme, Stuttgart, New York, 2002), p. 42

    Google Scholar 

  31. K. Kiss-Eröss, Comprehensive analytical chemistry: Analytical infrared spectroscopy, ed. by G. Svehla (Elsevier scientific publishing company, Amsterdam, 1976), p. 396

  32. L.G. Wade, Organic Chemistry (Pearson Education, Upper Saddle River, 2006), p. 1024

    Google Scholar 

  33. X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, J. Phys. Chem. B. 101. 6525 (1997). http://www.springer.com/chemistry/catalysis/journal/10934

Download references

Acknowledgments

This work was financially supported by the German Academic Exchange Service (DAAD) and Russian Ministry of Education and Science in the frame of program “Mikhail Lomonosov”. The authors are grateful to M. Wickleder and M.Ahlers (Institute of Chemistry, Carl von Ossietzky University, Germany) for TGA/DTA measurements. We also thank E. Borodina, F. Kirby (University of Utrecht, Department of Inorganic Chemistry and Catalysis) and E. Corker (Technical University of Denmark, Department of Chemistry) for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Karpov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpov, S.I., Roessner, F. & Selemenev, V.F. Studies on functionalized mesoporous materials—Part I: characterization of silylized mesoporous material of type MCM-41. J Porous Mater 21, 449–457 (2014). https://doi.org/10.1007/s10934-014-9791-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9791-x

Keywords

Navigation