Skip to main content
Log in

Granulated Hierarchical Zeolite Y and Dealuminated Samples Based on It in Pentene Oligomerization

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic properties of a number of FAU (Y) zeolite samples (microporous zeolite H-Y, granular hierarchical zeolite H-Yh, zeolite H-USYh dealuminated by high-temperature steam treatment (HTST), and zeolite H-USYh a.t. dealuminated by HTST with subsequent acid treatment) in the oligomerization of 1-pentene. The samples were characterized by X-ray fluorescence analysis, X-ray powder diffraction analysis, low-temperature nitrogen adsorption–desorption, scanning electron microscopy, and temperature-programmed desorption of ammonia. It was determined that the total yield of pentene oligomers under the studied conditions (150°С, 10 wt % catalyst, 5 h) decreases in the order H-USYh a.t. (93%) ≈ H-Yh (93%) > H-Y (74%) > H-USYh (70%). The dealuminated sample H-USYh a.t., which has the largest mesopore volume, showed high stability in 1-pentene oligomerization at 180°C. The conversion of the monomer in its presence remained unchanged during 5 cycles of operation without catalyst regeneration, and the yield of pentene oligomers after 5 cycles decreased by 39%. Microporous zeolite H-Y lost activity already after the second cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cejka, J., Corma, A., and Zones, S. Zeolites and Catalysis: Synthesis, Reactions and Applications, Weinheim: Wiley, 2010.

    Book  Google Scholar 

  2. Kerstens, D., Smeyers, B., Van Waeyenberg, J., Qiang Zhang, Q., Yu, J., and Sels, B.S., Adv. Mater., 2020, vol. 32, no. 44., 2004 690.

    Article  Google Scholar 

  3. Chen, L.-H., Sun, M.-H., Wang, Zh., Yang, W., Xie, Z., and Su, B.-L., Chem. Rev., 2020, vol. 120, vol., 20, p. 11194.

  4. Corma, A., Martínez, C., and Doskocil, E., J. Catal., 2013, vol. 300, p. 183.

    Article  CAS  Google Scholar 

  5. Zhang, L., Ke, M., Song, Z., Liu, Ya., Shan, W., Wang, Q., Xia, Ch., Li, Ch., and He, Ch., Catalysts, 2018, vol. 8, no. 8, p. 298.

    Article  Google Scholar 

  6. Moon, S., Chae, H.J., and Park, M.B., Appl. Catal., A, 2018, vol. 553, p. 15.

  7. Monama, W., Mohiuddin, E., Thangaraj, B., Mdleleni, M.M., and Key, D., Catal. Today, 2020, vol. 342, p. 167.

    Article  CAS  Google Scholar 

  8. Chal, R., Gérardin, C., Bulut, M., and van Donk, S., Chem. Cat. Chem., 2011, vol. 3, p. 67.

    CAS  Google Scholar 

  9. Wei, Y., Parmentier, T.E., de Jong, P.K., and Zečević, J., Chem. Soc. Rev., 2015, vol. 44, p. 7234

    Article  CAS  Google Scholar 

  10. Feliczak-Guzik, A., Microporous Mesoporous Mater., 2017, vol. 259, p. 33.

    Article  Google Scholar 

  11. Jia, X., Khan, W., Wu, Z., Choi, J., and Yip, A.C.K., Adv. Powder Technol., 2019, vol. 30, p. 467.

    Article  CAS  Google Scholar 

  12. Patent RF No. 2456238, 2012.

  13. Patent RF No. 2739350, 2020.

  14. Kutepov, B.I., Travkina, O.S., Agliullin, M.R., Khazipova, A.N., Pavlova, I.N., Bubennov, S.V., Kostyleva, S.A., and Grigor’eva, N.G., Pet. Chem., 2019, vol. 59, p. 297.

    Article  CAS  Google Scholar 

  15. Travkina, O.S., Agliullin, M.R., Filippova, N.A., Khazipova, A.N., Danilova, I.G., Grigor’eva, N.G., Narender, N., Pavlov, M.L., and Kutepov, B.I., RSC Adv., 2017, vol. 7. P. 32581.

    Article  CAS  Google Scholar 

  16. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1973.

    Google Scholar 

  17. Silaghi, M.-Ch., Chizallet, C., and Raybaud, P., Microporous Mesoporous Mater, 2014, vol. 191, p. 82.

    Article  CAS  Google Scholar 

  18. van Donk, S., Broersma, A., Gijzeman, O.L.J., van Bokhoven, J.A., Bitter, J.H., and de Jong, K.P., J. Catal., 2001, vol. 204, p. 272.

    Article  CAS  Google Scholar 

  19. Verboekend, D., Chabaneix, A.M., Thomas, K., Gilson, J.-P., and Pérez-Ramírez, J., CrystEngComm, 2011, vol. 13, p. 3408.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under state assignment for the Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia (subject no. FMRS-2022-0080). The study of the synthesis of pentene oligomers was supported by the Russian Foundation for Basic Research (project no. 20-33-90120). The structural studies were carried out at the Agidel’ Regional Center for Shared Equipment Use, Ufa Federal Research Center, Russian Academy of Sciences, under state assignment for the Institute of Petrochemistry and Catalysis (subject no. FMRS-2022-0081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Serebrennikov or N. G. Grigor’eva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviations and notation: HTST, high-temperature heat treatment; DC, degree of crystallinity; XRD, X-ray powder diffraction analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebrennikov, D.V., Grigor’eva, N.G., Khazipova, A.N. et al. Granulated Hierarchical Zeolite Y and Dealuminated Samples Based on It in Pentene Oligomerization. Kinet Catal 63, 577–584 (2022). https://doi.org/10.1134/S0023158422050093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422050093

Keywords:

Navigation