Skip to main content
Log in

Kinetic Model and Mechanism of Hydrogenation of Unsaturated Carbocyclic Compounds Based on Norbornadiene

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Liquid-phase hydrogenation of bicyclo[2.2.1]hepta-2,5-diene (norbornadiene, ND) proceeds in the presence of an industrial palladium catalyst Pd/γ-Al2O3 (PK-25) in an n-heptane solution at 76°C via consecutive formation of bicyclo[2.2.1]hept-2-ene (norbornene, NE) and bicyclo[2.2.1]heptane (norbornane, NA), as well as tricyclo[2.2.1.02,6]heptane (nortricyclane, NT) as a minor product. The reaction products were identified, the main routes were determined, and the material balance was studied. Preferable adsorption of ND at the active palladium site over adsorption of other components of the system was confirmed. A parallel-serial scheme of the process mechanism was proposed based on the sum of experimental and theoretical data. Zero order kinetics was observed in a wide range of initial substrate concentrations. The apparent rate constants of each stage were measured. A detailed kinetic model was developed based on the Langmuir–Hinshelwood approach, assuming multiple adsorption of substrates at a single active site of the heterogeneous catalyst. The model adequately describes the available experimental data using the proposed mechanism of ND hydrogenation. The possibility of a “cocktail” mechanism for the given reaction was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tsai, H., Luo, M., Lin, W., Chang, C., and Chen, K., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, vol. 68, p. o2945.

    Article  CAS  Google Scholar 

  2. Fein, K., Bousfield, D.W., and Gramlich, W.M., Carbohyd. Polym., 2020, vol. 250, p. 117001.

    Article  CAS  Google Scholar 

  3. Ravishankar, P.S., Rubber Chem. Technol., 2012, vol. 85, p. 327.

    Article  CAS  Google Scholar 

  4. Louie, D.K., Elastomers. Handbook of Sulphuric Acid Manufacturing, Richmond Hill: DKL Engineering, 2005, p. 16.

    Google Scholar 

  5. Belov, N.A., Gringolts, M.L., Morontsev, A.A., Starannikova, L.E., Yampolskii, Yu.P., and Finkelstein, E.Sh., Polym. Sci., Ser. B, 2017, vol. 59, p. 560.

    Article  CAS  Google Scholar 

  6. Vintila, I.S., Iovu, H., Alcea, A., Cucuruz, A., Cristian, M.A., and Vasile, B.S., Polymers, 2020, vol. 12, p. 1052.

    Article  CAS  Google Scholar 

  7. Morontsev, A.A., Denisova, Yu.I., Gringolts, M.L., Filatova, M.P., Shandryuk, G.A., Finkelshtein, E.Sh., and Kudryavtsev, Ya.V., Polym. Sci., Ser. B, 2018, vol. 60, no. 5, p. 688.

    Article  CAS  Google Scholar 

  8. Flid, V.R., Gringolts, M.L., Shamsiev, R.S., and Finkelshtein, E.Sh., Russ. Chem. Rev., 2018, vol. 87, p. 1169.

    Article  CAS  Google Scholar 

  9. Mansø, M., Petersen, A.U, Wang, Z., Erhart, P., Mogens Brøndsted Nielsen, M.B., and Moth-Poulsen, K., Nat. Commun., 2018, vol. 9, p. 1945.

    Article  Google Scholar 

  10. Orrego-Hernández, J., Dreos, A., and Moth-Poulsen, K., Acc. Chem. Res., 2020, vol. 53, no. 8, p. 1478.

    Article  Google Scholar 

  11. Kilde, M.D., Manso, M., Ree, N., Petersen, A.U., Moth-Poulsen, K., Mikkelsen, K.V., and Nielsen, M.B., Org. Biomol. Chem., 2019, vol. 17, p. 7735.

    Article  CAS  Google Scholar 

  12. Fiorino, F., Perissutti, E., Severino, B., Santagada, V., Cirillo, D., Terracciano, S., Massarelli, P., Bruni, G., Collavoli, E., Renner, C., and Caliendo, G., J. Med. Chem., 2005, vol. 48, no. 17, p. 5495.

    Article  CAS  Google Scholar 

  13. Rao, V.N., Mane, S.R., Abhinoy, K., Sarma, J.D., and Shunmugam, R., Biomacromolecules, 2012, vol. 13, no. 1, p. 221.

    Article  Google Scholar 

  14. Sundh, U.B., Binderup, M.-L., Bolognesi, C., Brimer, L., Castle, L., Di Domenico, A., Engel, K.-H., Franz, R., Gontard, N., Gurtler, R., Husoy, T., Jany, K.-D., Martine, K.-C., Leclercq, C., Lhuguenot, J.-C., et al., EFSA J., 2014, vol. 12, no. 6, p. 3714.

    Google Scholar 

  15. Carvalho, V.P., Ferraz, C.P., and Lima-Neto, B.S., J. Mol. Catal. A: Chem., 2010, vol. 333, p. 46.

    Article  CAS  Google Scholar 

  16. Finkelshtein, E.S., Bermeshev, M.V., Gringolts, M.L., Starannikova, L.E., and Yampolskii, Y.P., Russ. Chem. Rev., 2011, vol. 80, p. 341.

    Article  CAS  Google Scholar 

  17. Pan, Y., Zhang, H., Zhang, C., Wang, H., Jing, K., Wang, L., Zhang, X., and Liu, G., Energy Fuels, 2020, vol. 34, no. 2, p. 1627.

    Article  CAS  Google Scholar 

  18. Savos'kin, M.V., Kapkan, L.M., Vaiman, G.E., Vdovichenko, A.N., Gorkunenko, O.A., Yaroshenko, A.P., Popova, A.F., Mashchenko, A.N., Tkacheva, V.A., Voloshina, M.L., and Potapova, Yu.F., Russ. J. Appl. Chem., 2007, vol. 80, no. 1, p. 32.

    Google Scholar 

  19. Shorunov, S.V., Zarezin, D.P., Samoilov, V.O., Rudakova, M.A., Borisov, R.S., Maximov, A.L., and Bermeshev, M.V., Fuel, 2021, vol. 283, p. 118935.

    Article  CAS  Google Scholar 

  20. Mikus, M.S., Torker, S., and Hoveyda, A.H., Angew. Chem., Int. Ed., 2016, vol. 55, p. 4997.

    Article  CAS  Google Scholar 

  21. Katsman, E.A., Danyushevskii, V.Ya., Shamsiev, R.S., and Flid, V.R., Theory and Practice of Heterogeneous Catalysts and Adsorbents, Koifman, O.I., Ed., Moscow: URSS, 2020.

    Google Scholar 

  22. Amir-Ebrahimi, V. and Rooney, J.J., Catal. Lett., 2009, vol. 127, p. 20.

  23. Berenblyum, A.S., Katsman, E.A., and Al-Wadhaf, H.A., Pet. Chem., 2015, vol. 55, no. 2, p. 118.

    Article  CAS  Google Scholar 

  24. Silina, I.S., Katsman, E.A., Treger, Yu.A., Rozanov, V.N., Iskhakova, L.D., Ermakov, R.P., Koltashev, V.V., and Bruk, L.G., Tonkie Khim. Tekhnol., 2017, vol. 12, no. 2, p. 50.

    CAS  Google Scholar 

  25. Kuttubaev, S.N., Rakhimov, M.N., Pavlov, M.L., Basimova, R.A., and Kutepov, B.I., Neftegazovoe Delo, 2012, no. 4, p. 165

  26. Zamalyutin, V.V., Katsman, E.A., Danyushevskii, V.Ya., Flid, V.R., Podol’skii, V.V., and Ryabov, A.V., Koord. Khim., 2021, vol. 46, no. 10. (In press).

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., et al. Gaussian 09, Revision A.02., Gaussian Inc., 2016.

  28. Brunauer, S., The Adsorption of Gas and Vapors, London: Oxford University, vol. 1, 1943.

    Google Scholar 

  29. Vessally, E. and Aryana, S., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 1, p. 136.

    Article  CAS  Google Scholar 

  30. Handzlik, J., Stosur, M., Kochel, A., and Szymańska-Buzar, T., Inorg. Chim. Acta, 2008, vol. 361, no. 2, p. 502.

    Article  CAS  Google Scholar 

  31. Szabo, R., Le, K.N., and Kowalczyk, T., Sustainable Energy Fuels, 2021, vol. 5, p. 2335.

    CAS  Google Scholar 

  32. Vessally, E., JICS, 2009, vol. 6, p. 99.

    Article  CAS  Google Scholar 

  33. Hall, H.K., Jr., Smih, C.D., and Baldt, J.H., J. Am. Chem. Soc., 1973, vol. 95, p. 3197.

    Article  CAS  Google Scholar 

  34. Berenblyum, A.S., Danyushevsky, V.Ya., and Katsman, E.A., Kinet. Catal., 2019, vol. 60, no. 4, p. 381.

    Article  CAS  Google Scholar 

  35. Shamsiev, R.S., Danilov, F.O., and Morozova, T.A., Russ. Chem. Bull., 2017, vol. 66, no. 3, p. 401.

    Article  CAS  Google Scholar 

  36. Shamsiev, R.S., Danilov, F.O., Flid, V.R., and Shmidt, E.Yu., Russ. Chem. Bull., 2017, vol. 66, no. 12, p. 2234.

    Article  CAS  Google Scholar 

  37. Berenblyum, A.S., Al-Wadhaf, H.A., Katsman, E.A., and Flid, V.R., Kinet. Catal., 2011, vol. 52, no. 2, p. 296.

    Article  CAS  Google Scholar 

  38. Berenblyum, A.S., Podoplelova, T.A., Katsman, E.A., Shamsiev, R.S., and Danyushevsky, V.Ya., Kinet. Catal., 2012, vol. 53, no. 5, p. 595.

    Article  CAS  Google Scholar 

  39. Chernyshev, V.M., Khazipov, O.V., Eremin, D.B., Denisova, E.A., and Ananikov, V.P., Coord. Chem. Rev., 2021, vol. 437, p. 1.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Multiaccess Center of the Russian Technological University MIREA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zamalyutin or V. R. Flid.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: PK-25, 0.25% Pd/γ-Al2O3; ND, norbornadiene, bicyclo[2.2.1]hepta-2,5-diene; NE, norbornene, bicyclo[2.2.1]hept-2-ene; NA, norbornane, bicyclo[2.2.1]heptane; NT, nortricyclane, tricyclo[2.2.1.02,6]heptane; GLC, gas–liquid chromatography; MP2, second-order Møller–Plesset perturbation theory; DFT, density functional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamalyutin, V.V., Katsman, E.A., Ryabov, A.V. et al. Kinetic Model and Mechanism of Hydrogenation of Unsaturated Carbocyclic Compounds Based on Norbornadiene. Kinet Catal 63, 234–242 (2022). https://doi.org/10.1134/S0023158422020136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422020136

Keywords:

Navigation