Skip to main content
Log in

Kinetic Model and Mechanism of Heterogeneous Hydrogenation of Strained Polycyclic Compounds Derived from 5-Vinyl-2-norbornene

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The main pathways of liquid-phase hydrogenation of 5-ethenylbicyclo[2.2.1]hept-2-ene (5-vinyl-2-norbornene, VNE) in the presence of PK-25 palladium catalyst (Pd/γ-Al2O3, 0.25% Pd) were studied. All the reaction products were identified, and the material balance was examined. The effect of the prevalent adsorption of the norbornene double bond on the Pd active site (AS) was confirmed. The parallel-consecutive scheme of the process mechanism, based on the set of experimental and theoretical data, was suggested. It involves the successive substrate hydrogenation and significant role of the isomerization of the vinyl group into the ethylidene group in intermediates on AS in a hydrogen atmosphere. The reaction is zero-order in a wide interval of initial VNE concentrations. An adequate kinetic model of the process, based on the Langmuir–Hinshelwood approach and the concept of multiple adsorption of substrates on one AS, was developed. Five steps, including two parallel steps, significantly contribute to the reaction rate. Their rate constants and the adsorption constants of AS complexes with unsaturated compounds were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 3.
Scheme 4.
Fig. 5.
Fig. 6.
Scheme 5.

Similar content being viewed by others

REFERENCES

  1. Cai, Y., Zheng, J., Hu, Y., Wei, J., and Fan, H., Eur. Polym. J., 2022, vol. 177, article 111468. https://doi.org/10.1016/j.eurpolymj.2022.111468

  2. Fein, K., Bousfield, D.W., and Gramlich, W.M., Carbohyd. Polym., 2020, vol. 250, article 117001. https://doi.org/10.1016/j.carbpol.2020.117001

  3. Ravishankar, P.S., Rubber Chem. Technol., 2012, vol. 85, pp. 327–349. https://doi.org/10.5254/rct.12.87993

    Article  CAS  Google Scholar 

  4. Flid, V.R., Gringolts, M.L., Shamsiev, R.S., and Finkelshtein, E.Sh., Russ. Chem. Rev., 2018, vol. 87, pp. 1169–1205. https://doi.org/10.1070/RCR4834

    Article  CAS  Google Scholar 

  5. Kong, P., Drechsler, S., Balog, S., Schrettl, S., Weder, C., and Kilbinger, A.F.M., Polym. Chem., 2019, vol. 10, pp. 2057–2063. https://doi.org/10.1039/C9PY00187E

    Article  CAS  Google Scholar 

  6. Roenko, A.V., Nikiforov, R.Y., Gringolts, M.L., Belov, N.A., Denisova, Y.I., Shandryuk, G.A., Bondarenko, G.N., Kudryavtsev, Y.V., and Finkelshtein, E.S., Polymers, 2022, vol. 14, article 444. https://doi.org/10.3390/polym14030444

  7. Thomas, J., Bouscher, R.F., Nwosu, J., and Soucek, M.D., ACS Sustain. Chem. Eng., 2022, vol. 10, pp. 12342–12354. https://doi.org/10.1021/acssuschemeng.2c03434

    Article  CAS  Google Scholar 

  8. Belov, N.A., Gringolts, M.L., Morontsev, A.A., Starannikova, L.E., Yampolskii, Yu.P., and Finkelstein, E.Sh., Polym. Sci., Ser. B, 2017, vol. 59, pp. 560–569. https://doi.org/10.1134/S1560090417050025

    Article  CAS  Google Scholar 

  9. Vintila, I.S., Iovu, H., Alcea, A., Cucuruz, A., Mandoc, A.C., and Vasile, B.S., Polymers, 2020, vol. 12, article 1052. https://doi.org/10.3390/polym12051052

  10. Morontsev, A.A., Denisova, Yu.I., Gringolts, M.L., Filatova, M.P., Shandryuk, G.A., Finkelshtein, E.Sh., and Kudryavtsev, Ya.V., Polym. Sci., Ser. B, 2018, vol. 60, pp. 688–698. https://doi.org/10.1134/S1560090418050111

    Article  CAS  Google Scholar 

  11. Li, G., Shen, R., Hu, Sh., Wang, B., Algadi, H., and Wang, Ch., Adv. Compos. Hybrid Mater., 2022, vol. 5, pp. 2131–2137. https://doi.org/10.1007/s42114-022-00559-3

    Article  CAS  Google Scholar 

  12. Le, D., Samart, Ch., Lee, J.-T., Nomura, K., Kongparakul, S., and Kiatkamjornwong, S., ACS Omega, 2020, vol. 5, pp. 29678–29687. https://doi.org/10.1021/acsomega.0c02645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sparaco, R., Kędzierska, E., Kaczor, A.A., Bielenica, A., Magli, E., Severino, B., Corvino, A., Gibuła-Tarłowska, E., Kotlińska, J.H., Andreozzi, G., Luciano, P., Perissutti, E., Frecentese, F., Casertano, M., Leśniak, A., BujalskaZadrożny, M., Oziębło, M., Capasso, R., Santagada, V., Caliendo, G., and Fiorino, F., Molecules, 2022, vol. 27, article 6492. https://doi.org/10.3390/molecules27196492

  14. Çapan, İ., Servi, S., Dalkiliç, S., and Dalkiliç, L.K., ChemistrySelect, 2020, vol. 5, pp. 14393–14398. https://doi.org/10.1002/slct.202004034

    Article  CAS  Google Scholar 

  15. Fiorino, F., Perissutti, E., Severino, B., Santagada, V., Cirillo, D., Terracciano, S., Massarelli, P., Bruni, G., Collavoli, E., Renner, C., and Caliendo, G., J. Med. Chem., 2005, vol. 48, no. 17, pp. 5495–5503. https://doi.org/10.1021/jm050246k

    Article  CAS  PubMed  Google Scholar 

  16. Rao, V.N., Mane, S.R., Abhinoy, K., Sarma, J.D., and Shunmugam, R., Biomacromolecules, 2012, vol. 13, no. 1, pp. 221–230. https://doi.org/10.1021/bm201478k

    Article  CAS  Google Scholar 

  17. Ulla, B. S., Binderup, M.-L., Bolognesi, C., Brimer, L., Castle, L., Di Domenico, A., Engel, K.-H., Franz, R., Gontard, N., Gürtler, R., Husøy, T., Jany, K.-D., Kolf-Clauw, M., Leclercq, C., Lhuguenot, J.-C., Mennes, W., Milana, M.R., Poças, M. de F., Pratt, I., Svensson, K., Toldrá, F., and Wölfle, D., EFSA J., 2014, vol. 12, no. 6, article 3714. https://doi.org/10.2903/j.efsa.2014.3714

  18. Shorunov, S.V., Piskunova, E.S., Petrov, V.A., Bykov, V.I., and Bermeshev, M.V., Petrol. Chem., 2018, vol. 58, pp. 1056–1063. https://doi.org/10.1134/S0965544118120125

    Article  CAS  Google Scholar 

  19. Shorunov, S.V., Zarezin, D.P., Samoilov, V.O., Rudakova, M.A., Borisov, R.S., Maximov, A.L., and Bermeshev, M.V., Fuel, 2021, vol. 283, article 118935. https://doi.org/10.1016/j.fuel.2020.118935

  20. Zamalyutin, V.V., Ryabov, A.V., Nichugovskii, A.I., Skryabina, A.Yu., Tkachenko, O.Yu., and Flid, V.R., Russ. Chem. Bull., 2022, vol. 71, pp. 70–75.

    Article  CAS  Google Scholar 

  21. Zamalyutin, V.V., Ryabov, A.V., Solomakha, E.A., Katsman, E.A., Flid, V.R., Tkachenko, O.Yu., and Shpinyova, M.A., Russ. Chem. Bull., 2022, vol. 71, pp. 1204–1208.

    Article  CAS  Google Scholar 

  22. Zamalyutin, V.V., Shamsiev, R.S., and Flid, V.R., Russ. Chem. Bull., 2022, pp. 2142–2148.

  23. Zamalyutin, V.V., Katsman, E.A., Danyushevsky, V.Y., Flid, V.R., Podol’skii, V.V., and Ryabov, A.V., Russ. J. Coord. Chem., 2021, vol. 47, no. 10, pp. 695–701.

    Article  CAS  Google Scholar 

  24. Zamalyutin, V.V., Katsman, E.A., Ryabov, A.V., Skryabina, A.Y., Shpinyova, M.A., Danyushevsky, V.Y., and Flid, V.R., Kinet. Catal., 2022, vol. 63, no. 2, pp. 234–242.

    Article  CAS  Google Scholar 

  25. Osokin, Yu.G., Mikhailov, V.A., Zubovich, I.A., and Fel’dblyum, V.Sh., Dokl. Akad. Nauk SSSR, 1975, vol. 220, no. 4, pp. 851–853.

    CAS  Google Scholar 

  26. Bermeshev, M.V., Pozharskaya, N.A., Antonova, T.N., Shangareev, D.R., and Danilova, A.S., Petrol. Chem., 2018, vol. 58, no. 10, pp. 869–875.

    Article  CAS  Google Scholar 

  27. Ushakov, N.V., Russ. J. Appl. Chem., 2018, vol. 91, pp. 728–745. https://doi.org/10.1134/S1070427218050026

    Article  CAS  Google Scholar 

  28. Vereshchagina, N.V., Antonova, T.N., Il’in, A.A., and Chirkova, Z.V., Petrol. Chem., 2016, vol. 56, no. 1, pp. 38–43. https://doi.org/10.1134//S0965544115080198

    Article  CAS  Google Scholar 

  29. Kuttubaev, S.N., Rakhimov, M.N., Pavlov, M.L., Basimova, R.A., and Kutepov, B.I., Neftegaz. Delo, 2012, no. 4, pp. 165–178.

    Google Scholar 

  30. Urmès, С., Schweitzer, J.-M., Cabiac, A., and Schuurman, Y., Catalysts, 2019, vol. 9, article 180. https://doi.org/10.3390/catal9020180

  31. Molero, H., Bartlett, B.F., and Tysoe, W.T., J. Catal., 1999, vol. 181, pp. 49–56.

    Article  CAS  Google Scholar 

  32. Borodzinski, A. and Bond, G.C., Catal. Rev., 2008, vol. 50, pp. 379–469. https://doi.org/10.1080/01614940802142102

    Article  CAS  Google Scholar 

  33. Al-Wadhaf, H.A., Karpov, V.M., and Katsman, E.A., Catal. Commun., 2018, vol. 116, pp. 67–71. https://doi.org/10.1016/j.catcom.2018.08.010

    Article  CAS  Google Scholar 

  34. Berenblyum, A.S., Katsman, E.A., and AlWadhaf, H.A., Petrol. Chem., 2015, vol. 55, no. 2, pp. 118–126. https://doi.org/10.1134/S0965544115020048

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Shared Use of the Russian University of Technology MIREA and was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of Agreement no. 075-15-2021-689 of September 1, 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zamalyutin or V. R. Flid.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamalyutin, V.V., Katsman, E.A. & Flid, V.R. Kinetic Model and Mechanism of Heterogeneous Hydrogenation of Strained Polycyclic Compounds Derived from 5-Vinyl-2-norbornene. Pet. Chem. 63, 277–288 (2023). https://doi.org/10.1134/S0965544123010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123010073

Keywords:

Navigation