Skip to main content
Log in

Formation of Effective Copper-Based Catalysts of Methanol Synthesis

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The regularities of formation of the composition and structure of a highly efficient catalyst for methanol synthesis have been revealed. The catalyst was obtained by thermal treatment of the combined CuZnAl(Cr) hydroxocarbonate followed by the reductive activation of the anion-modified zinc oxide precursor. The composition and structure of hydroxocarbonate are determined by the nature of components and their ratio. The thermal decomposition of hydroxocarbonates at 550–650 K formed the oxide catalyst; at higher temperatures, the product was an inactive mixture of oxides. The oxide catalyst is mixed zinc oxide containing the Cu2+ and Al or Cr3+ cations and residual (СО3)2– and ОН anions, i.e., the anion-modified oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bems, B., Schur, M., Dassenoy, A., Junkes, H., Herein, D., and Schlögl, R., Chem. Eur. J., 2003, vol. 9, p. 2039.

    Article  CAS  Google Scholar 

  2. Sadeghinia, M., Ghaziania, A.N.K., and Rezaei, M., Mol. Catal., 2018, vol. 456, p. 38.

    Article  CAS  Google Scholar 

  3. Jeong, C. and Suh, Y.-W., Appl. Chem. Eng., 2016, vol. 27, no. 6, p. 555.

    Article  CAS  Google Scholar 

  4. Güldenpfennig, A., Distaso, M., and Peukert, W., Chem. Eng. J., 2019, vol. 369, p. 996.

    Article  Google Scholar 

  5. Jeong, Y., Kim, I., Kang, J.Y., Jeong, H., Park, J.K., Park, J.H., and Jung, J.C., J. Mol. Catal., A: Chem., 2015, vol. 400, p. 132.

    Article  CAS  Google Scholar 

  6. Lee, W.J., Bordoloi, A., Patel, J., and Bhatelia, T., Catal. Today., 2020.

  7. Mota, N., Guil-Lopez, R., Pawelec, B.G., Fierro, J.L.G., and Navarro, R.M., RSC Adv., 2018, vol. 8, p. 20619.

    Article  CAS  Google Scholar 

  8. Sehested, J., J. Catal., 2019, vol. 371, p. 368.

    Article  CAS  Google Scholar 

  9. Plyasova, L.M., Yurieva, T.M., Kriger, T.A., Makarova, O.V., Zaikovskii, V.I., Solov’eva, L.P., and Shmakov, A.N., Kinet. Katal., 1995, vol. 36, no. 3, p. 464.

    Google Scholar 

  10. Spenser, M.S., Catal. Lett., 2000, vol. 66, p. 255.

  11. Yurieva, T.M., React. Kinet. Catal. Lett., 1995, vol. 55, no. 2, p. 513.

  12. Baltes, C., Vukojevic, S., and Schűth, F., J. Catal., 2008, vol. 258, p. 334.

  13. Behrens, M., J. Catal., 2009, vol. 267, p. 24.

  14. Kondrat, S.A., Smith, P.J., Carter, J.H., Hayward, J.S., Pudge, G.J., Shaw, G.M., Spencer, M.S., Bartley, J.K., Taylor, S.H., and Hutchings, G.J., Faraday Discuss., 2017, vol. 197, p. 287.

  15. Smith, P.J., Kondrat, S.A., Chater, P.A., Yeo, B.R., Shaw, G.M., Lu, L., Bartley, J.K., Taylor, S.H., Spencer, M.S., Kiely, C.J., Kelly, G.J., Park, C.W., and Hutchings, G.J., Chem. Sci., 2017, vol. 8, p. 2436.

  16. Pollard, A.M., Spencer, M.S., Thomas, R.G., Williams, P.A., Holt, J., and Jennings, J.R., Appl. Catal., A, 1992, vol. 85, p. 1.

  17. Chinchen, G.C., Denny, P.J., Jennings, J.R., Spencer, M.S., and Waugh, K.C., Appl. Catal., 1988, vol. 36, p. 1.

  18. Waugh, K.C., Catal. Lett., 2012, vol. 142, p. 1153.

  19. Khassin, A.A., Minyukova, T.P., and Yurieva, T.M., Mendeleev Commun., 2014, vol. 24, no. 2, p. 67.

  20. Millar, G.J., Holm, I.H., Uwins, P.J.R., and Dennan, J., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 593.

  21. Behrens, M. and Schlögl, R., Z. Anorg. Allg. Chem., 2013, vol. 639, no. 15, p. 2683.

  22. Schumann, J., Lunkenbein, T., Tarasov, A., Thomas, N., Schlögl, R., and Behrens, M., ChemCatChem, 2014, vol. 6, p. 2889.

  23. Lunkenbein, T., Schumann, J., Behrens, M., Schlögl, R., and Willinger, M.G., Angew. Chem., Int. Ed., 2015, vol. 54, p. 4544.

  24. Schumann, J., Tarasov, A., Thomas, N., Schlögl, R., and Behrens, M., Appl. Catal., A, 2016, vol. 516, p. 117.

  25. Gogate, M.R., Pet. Sci. Technol., 2019, vol. 37, no. 6. P. 671.

    Article  CAS  Google Scholar 

  26. Guil-López, R., Mota, N., Llorente, J., Millán, E., Pawelec, B., García, R., Fierro, J.L.G., and Navarro, R.M., Catal. Today., 2019. https://doi.org/10.1016/j.cattod.2019.03.034

  27. Tarasov, A., Schumann, J., Girgsdies, F., Thomas, N., and Behrens, M., Thermochim. Acta, 2014, vol. 591, p. 1.

    Article  CAS  Google Scholar 

  28. Roberts, A., Jambor, J., and Grice, J., Powder Diffr. J., 1986, vol. 1, p. 56.

    Article  CAS  Google Scholar 

  29. Minyukova, T.P., Plyasova, L.M., Yurieva, T.M., Litvak, G.S., and Ketchik, S.V., Kinet. Katal., 1989, vol. 30, p. 415.

    CAS  Google Scholar 

  30. Litvak, G.S., Minyukova, T.P., Demeshkina, M.P., Plyasova, L.M., and Yurieva, T.M., React. Kinet. Catal. Lett., 1986, vol. 31, p. 403.

    Article  CAS  Google Scholar 

  31. Pelipenko, V.V., Kochubey, D.I., Khassin, A.A., and Yurieva, T.M., React. Kinet. Catal. Lett., 2005, vol. 86, p. 307.

    Article  CAS  Google Scholar 

  32. Khassin, A.A., Pelipenko, V.V., Minyukova, T.P., Zaikovskii, V.I., Kochubey, D.I., and Yurieva, T.M., Catal. Today., 2006, vol. 112, p. 143.

    Article  CAS  Google Scholar 

  33. Plyasova, L.M., Yurieva, T.M., Kriger, T.A., Makarova, O.V., Zaikovskii, V.I., Solov’eva, L.P., and Shmakov, A.N., Kinet. Katal., 1995, vol. 36, p. 464.

    Google Scholar 

  34. Yurieva, T.M., Plyasova, L.M., Makarova, O.V., and Krieger, T.A., J. Mol. Catal., A: Chem., 1996, vol. 113, p. 455.

    Article  CAS  Google Scholar 

  35. Yurieva, T.M., Plyasova, L.M., Zaikovskii, V.I., Minyukova, T.P., Bliek, A., Heuvel, J.C., Davydova, L.P., Molina, I.Yu., Demeshkina, M.P., Khassin, A.A., and Batyrev, E.D., Phys. Chem. Chem. Phys., 2004, vol. 6, p. 4522.

    Article  CAS  Google Scholar 

  36. Hadzhieva, F.S., Anufrienko, V.F., Yurieva, T.M., Vorobiev, V.N., and Minyukova, T.P., React. Kinet. Catal. Lett., 1986, vol. 30, p. 85.

    Article  Google Scholar 

  37. Zwiener, L., Girgsdies, F., Brennecke, D., Teschner, D., Machoke, A.G.F., Schlögl, R., and Frei, E., Appl. Catal., B, 2019, vol. 249, p. 218.

    Article  CAS  Google Scholar 

  38. Yurieva, T.M., Plyasova, L.M., Krieger, T.A., Zaikovskii, V.I., Makarova, O.V., and Minyukova, T.P., React. Kinet. Catal. Lett., 1993, vol. 51, p. 495.

    Article  CAS  Google Scholar 

  39. Trounov, V.A., Lebedev, V.T., Sokolov, A.E., Grushko, Yu.S., Török, Gy., Van Den Heuvel, J.C., Batyrev, É., Yurieva, T.M., and Plyasova, L.M., Crystallogr. Rep., 2007, vol. 52, no. 3, p. 474.

    Article  CAS  Google Scholar 

  40. Clausen, B.S., Schiøts, J., Gråbæk, L., Ovesen, C.V., Jacobsen, K.W., Norskøv, J.K., and Topsøe, H., Top. Catal., 1994, vol. 1, p. 367.

    Article  CAS  Google Scholar 

  41. Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., and Topsøe, H., Science, 2002, vol. 295, p. 2053.

    Article  CAS  Google Scholar 

  42. Guenter, M.M., Ressler, T., Berns, B., Buescher, C., Genger, T., Hinrichsen, O., Muhler, M., and Schloegl, R., Catal. Lett., 2001, vol. 71, p. 37.

    Article  Google Scholar 

  43. Kasatkin, I., Kniep, B., and Ressler, T., Phys. Chem. Chem. Phys., 2007, vol. 7, p. 878.

    Article  Google Scholar 

  44. Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.-L., Tovar, M., Fischer, R.W., Nørskov, J.K., and Schlögl, R., Science, 2012, vol. 336, p. 893.

    Article  CAS  Google Scholar 

  45. Wilkinson, S.K., van de Water, L.G.A., Miller, B., Simmons, M.J.H., Stitt, E.H., and Watson, M.J., J. Catal., 2016, vol. 337, p. 208.

    Article  CAS  Google Scholar 

  46. Tisseraud, C., Comminges, C., Belin, T., Ahouari, H., Soualah, A., Pouilloux, Y., and Le Valant, A., J. Catal., 2015, vol. 330, p. 533.

    Article  CAS  Google Scholar 

  47. Le Valant, A., Comminges, C., Tisseraud, C., Pinard, C.C.L., and Pouilloux, Y., J. Catal., 2015, vol. 324, p. 41.

    Article  CAS  Google Scholar 

  48. Tisseraud, C., Comminges, C., Pronier, S., Pouilloux, Y., and Le Valant, A., J. Catal., 2016, vol. 343, p. 106.

    Article  CAS  Google Scholar 

  49. Kuld, S., Thorhauge, M., Falsig, H., Elkaer, C.F., Helveg, S., Chorkendorff, I., and Sehested, J., Science, 2016, vol. 352, p. 969.

    Article  CAS  Google Scholar 

  50. Kröhnert, J., Frei, E., Schlögl, R., and Trunschke, A., Top. Catal. 2017, vol. 60, p. 1735.

  51. Minyukova, T.P., Khassin, A.A., and Yurieva, T.M., Kinet. Catal., 2018, vol. 59, no. 1, p. 112.

  52. Fujitani, T. and Nakamura, J., Catal. Lett., 1998, vol. 56, p. 119.

Download references

ACKNOWLEDGMENTS

We are grateful to M.P. Demeshkina for sample preparation, to N.V. Shtertser for DTA studies, to I.Yu. Molina for XRD studies, and to Prof. L.M. Plyasova for useful discussions.

Funding

This study was performed under government contract at the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. АААА-А17-117041110045-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Minyukova.

Additional information

Translated by L. Smolina

Abbreviations and notation: DTA, differential thermal analysis; XRD, X-ray diffraction analysis; EM, electron microscopy; EXAFS, extended X-ray absorption fine structure; UV–Vis, spectroscopy in the UV and visible regions; HT-CO3, high-temperature carbonates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minyukova, T.P., Khassin, A.A., Khasin, A.V. et al. Formation of Effective Copper-Based Catalysts of Methanol Synthesis. Kinet Catal 61, 886–893 (2020). https://doi.org/10.1134/S0023158420060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420060087

Keywords:

Navigation