Skip to main content
Log in

Dehydrogenation of methanol over copper-containing catalysts

  • Catalysis in Chemical and Petrochemical Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A comparative study of copper-containing catalysts with different chemical and phase compositions is performed to determine conditions for the implementation of the vapor phase and highly selective dehydrogenation of methanol to methyl formate or syngas. A thermodynamic analysis of the reaction is also performed. It is shown that Cu0 nanoparticles formed in the course of reductive activation reveal different selectivities with respect to the formation of methyl formate from methanol or its dehydrogenation with formation of syngas. By correctly selecting the catalyst composition and process conditions, high (90–100%) selectivity with respect to either methyl formate or syngas can be attained. Catalysts based on Cu–Zn hydrosilicate of the zincsilite type and on CuAlZn aurichalcite are highly selective in the process of methyl formate formation. An estimation based on experimental data shows that the productivity of Cu/SiO2 catalyst, the one most effective in dehydrogenation to syngas, is as high as 20 m3/h of syngas at a methanol vapor pressure of 1 atm, a temperature of 200°C, and a contact time of 0.5 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J.S., Kim, J.C., and Kim, Y.G., Appl. Catal., A, 1990, vol. 57, no. 1, pp. 1–30.

    Article  CAS  Google Scholar 

  2. Sodesawa, T., React. Kinet. Catal. Lett., 1986, vol. 32, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  3. Sodesawa, T., Nagacho, M., Onodera, A., and Nozaki, F., J. Catal., 1986, vol. 102, no. 2, pp. 460–463.

    Article  CAS  Google Scholar 

  4. Guerreiro, E.D., Gorriz, O.F., Rivarola, L.A., and Arrúa, L.A., Appl. Catal., A, 1997, vol. 165, nos. 1–2, pp. 259–271.

    Article  CAS  Google Scholar 

  5. Guerreiro, E.D., Gorriz, O.F., Larsen, G., and Arrúa, L.A., Appl. Catal., A, 2000, vol. 204, no. 1, pp. 33–48.

    Article  CAS  Google Scholar 

  6. Gallo., Al., Tsoncheva, T., Marelli, M., Mihaylov, M., Dimitrov, M., Dal Santo, V., and Hadjiivanov, K., Appl. Catal., B, 2012, vol. 126, pp. 161–171.

    Article  CAS  Google Scholar 

  7. Rodriguez-Ramos, I., Guerrero-Ruiz, A., Rojas, M.L., and Fierro, J.L.G., Appl. Catal., 1991, vol. 68, no. 1, pp. 217–228.

    Article  CAS  Google Scholar 

  8. Chung, M.-J., Moon, D.-J., Park, K.-Y., and Ihm, S.-K., J. Catal., 1992, vol. 136, no. 2, pp. 609–612.

    Article  CAS  Google Scholar 

  9. Lapidus, A.L., Antonyuk, S.N., Kapkin, V.D., Bruk, I.A., Sominskii, S.D., and Pechuro, N.S., Neftekhimiya, 1985, vol. 25, no. 6, pp. 761–765.

    CAS  Google Scholar 

  10. Wang, Y., Ruan, G. and Han, S., React. Kinet. Catal. Lett., 1999, vol. 67, no. 2, pp. 305–310.

    Article  CAS  Google Scholar 

  11. Sato, S., Iijima, M., Nakayama, T., Sodesawa, T., and Nozaki, F., J. Catal., 1997, vol. 169, no. 2, pp. 447–454.

    Article  CAS  Google Scholar 

  12. Shlegel’, L., Gutshik, D., and Rozovskii, A.Ya., Kinet. Katal., 1990, vol. 4, no. 4, p. 1000.

    Google Scholar 

  13. Gorshkov, S.V., Lin, G.I., and Rozovskii, A.Ya., Kinet. Katal., 1999, vol. 40, no. 3, p. 372.

    Google Scholar 

  14. Yurieva, T.M., Kustova, G.N., Minyukova, T.P., Poels, E.K., Bliek, A., Demeshkina, M.P., Plyasova, L.M., Krieger, T.A., and Zaikovskii, V.I., Mater. Res. Innovations, 2001, vol. 5, no. 1, pp. 3–11.

    Article  CAS  Google Scholar 

  15. Yurieva, T.M., Plyasova, L.M., Zaikovskii, V.I., Minyukova, T.P., Bliek, A., Heuvel, J.C., Davydova, L.P., Molina, I.Yu., Demeshkina, M.P., Khassin, A.A., and Batyrev, E.D., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 18, pp. 4522–4526.

    Article  CAS  Google Scholar 

  16. Scholten, J.J.F. and Konvalinka, J.A., Trans. Faraday Soc., 1969, vol. 65, pp. 2465–2473.

    Article  CAS  Google Scholar 

  17. Sato, S., Takahashi, R., Sodesawa, T., Yuma, K.-I., and Obata, Y., J. Catal., 2000, vol. 196, no. 1, pp. 195–199.

    Article  CAS  Google Scholar 

  18. Evans, J.W., Wainwright, M.S., Bridgewater, A.J., and Young, D.J., Appl. Catal., 1983, vol. 7, no. 1, pp. 75–83.

    Article  CAS  Google Scholar 

  19. Minyukova, T.P., Simentsova, I.I., Khasin, A.V., Shtertser, N.V., Baronskaya, N.A., Khassin, A.A., and Yurieva, T.M., Appl. Catal., A, 2002, vol. 237, nos. 1–2, pp. 171–180.

    Article  CAS  Google Scholar 

  20. Yurieva, T.M., Minyukova, T.P., Kustova, G.N., Plyasova, L.M., Krieger, T.A., Demeshkina, M.P., Zaikovskii, V.I., Malakhov, V.V., and Dovlitova, L.S., Mater. Res. Innovations, 2001, vol. 5, no. 2, pp. 74–80.

    Article  CAS  Google Scholar 

  21. Minyukova, T.P., Shtertser, N.V., Khassin, A.A., Plyasova, L.M., Kustova, G.N., Zaikovskii, V.I., Shvedenkov, Yu.G., Baronskaya, N.A., van den Heuvel, J.C., Kuznetsova, A.V., Davydova, L.P., and Yurieva, T.M., Kinet. Catal., 2008, vol. 49, no. 6, pp. 821–830.

    Article  CAS  Google Scholar 

  22. Makarova, O.V., Yurieva, T.M., Kustova, G.N., Ziborov, A.V., Plyasova, L.M., Minyukova, T.P., and Zaikovskii, V.I., Kinet. Catal., 1993, vol. 34, no. 4, pp. 608–612.

    Google Scholar 

  23. Khassin, A.A., Kustova, G.N., Jobic, H., Yurieva, T.M., Chesalov, Yu.A., Filonenko, G.A., Plyasova, L.M., and Parmon, V.N., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 29, pp. 6090–6097.

    Article  CAS  Google Scholar 

  24. Yurieva, T.M., Catal. Today, 1999, vol. 51, nos. 3–4, pp. 457–467.

    Article  CAS  Google Scholar 

  25. Vitanen, M.M., Jansen, W.P.A., van Welzenis, R.G., Brongerma, H.H., Brands, D.S., Poels, E.K., and Bliek, A., J. Phys. Chem. B, 1999, vol. 103, no. 29, pp. 6025–6029.

    Article  Google Scholar 

  26. Zhang, Z., Patterson, M., Ren, M., Wang, Y., Flake, J.C., Sprunger, P.T., and Kurtz, R.L., J. Vac. Sci. Technol., A, 2013, vol. 31, no. 1, p. 01A144.

    Article  Google Scholar 

  27. Stull, D.R., Westrum, E.F., and Sinke, G.C., The Chemical Thermodynamics of Organic Compounds, New-York: John Wiley and Sons, 1969.

    Google Scholar 

  28. US Patent 5194675, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Minyukova.

Additional information

Original Russian Text © T.P. Minyukova, A.V. Khasin, A.A. Khassin, N.V. Shtertser, I.I. Simentsova, T.M. Yurieva, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minyukova, T.P., Khasin, A.V., Khassin, A.A. et al. Dehydrogenation of methanol over copper-containing catalysts. Catal. Ind. 8, 293–299 (2016). https://doi.org/10.1134/S2070050416040073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050416040073

Keywords

Navigation