Skip to main content
Log in

Coating the Internal Surface of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol by PdxZn1 – x/TiO2 Catalysts: A Kinetic Study

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the liquid-phase hydrogenation of 2-methyl-3-butyn-2-ol (MBI) on the thin films of Pd50Zn50/TiO2, Pd80Zn20/TiO2, and Pd/TiO2 was studied in a temperature range of 308–333 K at MBI concentrations of 0.1–0.6 mol/L. The films were applied to the internal walls of silica capillaries with an inside diameter of 530 μm. The reaction of MBI hydrogenation at its initial stage was of first order with respect to hydrogen, and the orders of reaction with respect to MBI on Pd50Zn50/TiO2, Pd80Zn20/TiO2, and Pd/TiO2 were 0.3, 0.4, and 0.5, respectively. The yield of the target product 2-methyl-3-buten-2-ol on the bimetallic films was higher than that on Pd/TiO2. The highest yield (94%) was achieved on the film of Pd50Zn50/TiO2 at a conversion of 99%, a temperature of 313 K, and a partial hydrogen pressure of 1 atm. The higher selectivity of the reaction, which occurred according to the Langmuir–Hinshelwood mechanism, on the bimetallic films was explained by a decrease in the alkene/alkyne and alkene/alkane ratios of adsorption constants and by a decrease in the rate constants of 2-methyl-3-buten-2-ol hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renken, A. and Kiwi-Minsker, L., Adv. Catal., 2010, vol. 53, p. 47. doi 10.1016/S0360-0564(10)53002-5

    CAS  Google Scholar 

  2. Rebrov, E.V., Berenguer-Murcia, A., Skelton, H.E., Johnson, B.F.G., Wheatley, A.E.H., and Schouten, J.C., Lab Chip, 2009, vol. 9, p. 503.

    Article  CAS  PubMed  Google Scholar 

  3. Rebrov, E.V., Klinger, E.A., Berenguer-Murcia, A., Sulman, E.M., and Schouten, J.C., Org. Process Res. Dev., 2009, vol. 13, p. 991.

    Article  CAS  Google Scholar 

  4. Cherkasov, N., Ibhadon, A.O., and Rebrov, E.V., Lab Chip, 2015, vol. 15, p. 1952.

    Article  CAS  PubMed  Google Scholar 

  5. Okhlopkova, L.B., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2016, vol. 57, no. 4, p. 501.

    Article  CAS  Google Scholar 

  6. Okhlopkova, L.B., Matus, E.V., Prosvirin, I.P., Kerzhentsev, M.A., and Ismagilov, Z.R., J. Nanopart. Res., 2015, vol. 17, p. 1.

    Article  CAS  Google Scholar 

  7. Okhlopkova, L.B. Cherepanova, S.V., Prosvirin, I.P., Kerzhentsev, M.A., and Ismagilov, Z.R., Appl. Catal., A, 2018, vol. 549, p. 245.

    Article  CAS  Google Scholar 

  8. Protasova, L.N., Rebrov, E.V., Skelton, H.E., Wheatley, A.E.H., and Schouten, J.C., Appl. Catal., 2011, vol. 399, p. 12.

    Article  CAS  Google Scholar 

  9. Vernuccio, S., Goy, R., Rudolf von Rohr, Ph., Medlock, J., and Bonrath, W., React. Chem. Eng., 2016, vol. 1, p. 445.

    Article  CAS  Google Scholar 

  10. Semagina, N., Grasemann, M., Xanthopoulos, N., Renken, A., and Kiwi-Minsker, L., J. Catal., 2007, vol. 251, p. 213.

    Article  CAS  Google Scholar 

  11. Semagina, N., Joannet, E., Parra, S., Sulman, E., Renken, A., and Kiwi-Minsker, L., Appl. Catal., A, 2005, vol. 280, p. 141.

    Article  CAS  Google Scholar 

  12. Singh, U.K. and Vannice, M.A., J. Catal., 2000, vol. 191, p. 165.

    Article  CAS  Google Scholar 

  13. Dominguez-Dominguez, S., Berenguer-Murcia, A., Cazorla-Amoros, D., and Linares-Solano, A., J. Catal., 2006, vol. 243, p. 74.

    Article  CAS  Google Scholar 

  14. Okhlopkova, L.B., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Katal., 2018, vol. 59, no. 3, p. 1.

    Article  Google Scholar 

  15. Kashid, M., Renken, A., and Kiwi-Minsker, L., Microstructured Devices for Chemical Processing, Weinheim; Wiley-VCH Verlag GmbH & Co. KGaA, 2014, p. 384.

    Google Scholar 

  16. Duca, D., Liotta, L.F., and Deganello, G., J. Catal., 1995, vol. 154, p. 69.

    Article  CAS  Google Scholar 

  17. Cherkasov, N., Ibhadon, A.O., McCue, A.J., Anderson, J.A., and Johnston, S.K., Appl. Catal., A, 2015, vol. 497, p. 22.

    Article  CAS  Google Scholar 

  18. Nikoshvili, L.Z., Makarova, A.S., Lyubimova, N.A., Bykov, A., Sidorov, A.I., Tyamina, I.Y., Matveeva, V.G., and Sulman, E.M., Catal. Today, 2015, vol. 256, p. 231.

    Article  CAS  Google Scholar 

  19. Okhlopkova, L.B., Kerzhentsev, M.A., Tuzikov, F.V., Larichev, Y.V., Prosvirin, I.P., and Ismagilov, Z.R., J. Nanopart. Res., 2012, vol. 14, p. 1089. doi 10.1007/s11051-012-1089-9

    Article  CAS  Google Scholar 

  20. Bond, G.C., Focus Catal., 2006, p. 8.

    Google Scholar 

  21. Tew, W., Janousch, M., Huthwelker, T., and van Bokhoven, J.A., J. Catal., 2011, vol. 283, p. 45.

    Article  CAS  Google Scholar 

  22. Dobrovolna, Z., Kacer, P., and Cerveny, L., J. Mol. Catal. A: Chem., 1998, vol. 130, p. 279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Okhlopkova.

Additional information

Original Russian Text © L.B. Okhlopkova, M.A. Kerzhentsev, Z.R. Ismagilov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 4, pp. 441–449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhlopkova, L.B., Kerzhentsev, M.A. & Ismagilov, Z.R. Coating the Internal Surface of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol by PdxZn1 – x/TiO2 Catalysts: A Kinetic Study. Kinet Catal 59, 450–458 (2018). https://doi.org/10.1134/S0023158418040092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418040092

Keywords

Navigation